Pedestrian and cyclist detection based on deep neural network fast R-CNN

被引:19
作者
Wang, Kelong [1 ,2 ]
Zhou, Wei [3 ]
机构
[1] Chinese Acad Social Sci, Grad Sch, Beijing, Peoples R China
[2] Beijing Green Auto Technol Co Ltd, Beijing, Peoples R China
[3] CICC ALPHA Beijing Investment Fund Management Co, Beijing, Peoples R China
关键词
Intelligent driving; deep neural network; pedestrian detection; cyclist detection; fast R-CNN; GRADIENTS;
D O I
10.1177/1729881419829651
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this article, a unified joint detection framework for pedestrian and cyclist is established to realize the joint detection of pedestrian and cyclist targets. Based on the target detection of fast regional convolution neural network, a deep neural network model suitable for pedestrian and cyclist detection is established. Experiments for poor detection results for small-sized targets and complex and changeable background environment; various network improvement schemes such as difficult case extraction, multilayer feature fusion, and multitarget candidate region input were designed to improve detection and to solve the problems of frequent false detections and missed detections in pedestrian and cyclist target detection. Results of experimental verification of the pedestrian and cyclist database established in Beijing's urban traffic environment showed that the proposed joint detection method for pedestrians and cyclists can realize the stable tracking of joint detection and clearly distinguish different target categories. Therefore, an important basis for the behavior decision of intelligent vehicles is provided.
引用
收藏
页数:10
相关论文
共 31 条
  • [1] Measuring the Objectness of Image Windows
    Alexe, Bogdan
    Deselaers, Thomas
    Ferrari, Vittorio
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) : 2189 - 2202
  • [2] Multiscale Combinatorial Grouping
    Arbelaez, Pablo
    Pont-Tuset, Jordi
    Barron, Jonathan T.
    Marques, Ferran
    Malik, Jitendra
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 328 - 335
  • [3] CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts
    Carreira, Joao
    Sminchisescu, Cristian
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (07) : 1312 - 1328
  • [4] BING: Binarized Normed Gradients for Objectness Estimation at 300fps
    Cheng, Ming-Ming
    Zhang, Ziming
    Lin, Wen-Yan
    Torr, Philip
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 3286 - 3293
  • [5] Vision-based Bicyclist Detection and Tracking for Intelligent Vehicles
    Cho, Hyunggi
    Rybski, Paul E.
    Zhang, Wende
    [J]. 2010 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2010, : 454 - 461
  • [6] Histograms of oriented gradients for human detection
    Dalal, N
    Triggs, B
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 886 - 893
  • [7] Category-Independent Object Proposals with Diverse Ranking
    Endres, Ian
    Hoiem, Derek
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (02) : 222 - 234
  • [8] Scalable Object Detection using Deep Neural Networks
    Erhan, Dumitru
    Szegedy, Christian
    Toshev, Alexander
    Anguelov, Dragomir
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 2155 - 2162
  • [9] Object Detection with Discriminatively Trained Part-Based Models
    Felzenszwalb, Pedro F.
    Girshick, Ross B.
    McAllester, David
    Ramanan, Deva
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (09) : 1627 - 1645
  • [10] Efficient graph-based image segmentation
    Felzenszwalb, PF
    Huttenlocher, DP
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (02) : 167 - 181