Refinement of Operator-valued Reproducing Kernels

被引:0
|
作者
Zhang, Haizhang [1 ,3 ]
Xu, Yuesheng [2 ,3 ]
Zhang, Qinghui [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[2] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[3] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
vector-valued reproducing kernel Hilbert spaces; operator-valued reproducing kernels; refinement; embedding; translation invariant kernels; Hessian of Gaussian kernels; Hilbert-Schmidt kernels; numerical experiments; GRADIENTS; SPACES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the construction of a refinement kernel for a given operator-valued reproducing kernel such that the vector-valued reproducing kernel Hilbert space of the refinement kernel contains that of the given kernel as a subspace. The study is motivated from the need of updating the current operator-valued reproducing kernel in multi-task learning when underfitting or overfitting occurs. Numerical simulations confirm that the established refinement kernel method is able to meet this need. Various characterizations are provided based on feature maps and vector-valued integral representations of operator-valued reproducing kernels. Concrete examples of refining translation invariant and finite Hilbert-Schmidt operator-valued reproducing kernels are provided. Other examples include refinement of Hessian of scalar-valued translation-invariant kernels and transformation kernels. Existence and properties of operator-valued reproducing kernels preserved during the refinement process are also investigated.
引用
收藏
页码:91 / 136
页数:46
相关论文
共 50 条
  • [31] VECTOR VALUED REPRODUCING KERNEL HILBERT SPACES AND UNIVERSALITY
    Carmeli, C.
    De Vito, E.
    Toigo, A.
    Umanita, V.
    ANALYSIS AND APPLICATIONS, 2010, 8 (01) : 19 - 61
  • [32] OPERATOR VALUED BMO AND COMMUTATORS
    Blasco, Oscar
    PUBLICACIONS MATEMATIQUES, 2009, 53 (01) : 231 - 244
  • [33] Vector-Valued Kernels of Bergman Type
    Muir, Jerry R., Jr.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (08) : 1791 - 1816
  • [34] Reproducing Kernel Sparse Representations in Relation to Operator Equations
    Qian, Tao
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (02)
  • [35] Optimal and Approximate Solutions of Singular Integral Equations by Means of Reproducing Kernels
    Castro, L. P.
    Saitoh, S.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (06) : 1839 - 1851
  • [36] Vector-Valued Reproducing Kernel Hilbert C*-Modules
    Moslehian, Mohammad Sal
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (01)
  • [37] 2-Valued and 3-Valued Abstraction-Refinement in Model Checking
    Grumberg, Orna
    LOGICS AND LANGUAGES FOR RELIABILITY AND SECURITY, 2010, 25 : 105 - 128
  • [38] Refinement-Based Specification and Security Analysis of Separation Kernels
    Zhao, Yongwang
    Sanan, David
    Zhang, Fuyuan
    Liu, Yang
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2019, 16 (01) : 127 - 141
  • [39] Vector-valued singular integral operators with rough kernels
    Lai, Xudong
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (06) : 2417 - 2439
  • [40] NUMERICAL SOLUTIONS OF LINEAR SINGULAR INTEGRAL EQUATIONS BY MEANS OF TIKHONOV REGULARIZATION AND REPRODUCING KERNELS
    Castro, L. P.
    Itou, H.
    Saitoh, S.
    HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (04): : 1261 - 1276