Refinement of Operator-valued Reproducing Kernels

被引:0
|
作者
Zhang, Haizhang [1 ,3 ]
Xu, Yuesheng [2 ,3 ]
Zhang, Qinghui [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[2] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[3] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
vector-valued reproducing kernel Hilbert spaces; operator-valued reproducing kernels; refinement; embedding; translation invariant kernels; Hessian of Gaussian kernels; Hilbert-Schmidt kernels; numerical experiments; GRADIENTS; SPACES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the construction of a refinement kernel for a given operator-valued reproducing kernel such that the vector-valued reproducing kernel Hilbert space of the refinement kernel contains that of the given kernel as a subspace. The study is motivated from the need of updating the current operator-valued reproducing kernel in multi-task learning when underfitting or overfitting occurs. Numerical simulations confirm that the established refinement kernel method is able to meet this need. Various characterizations are provided based on feature maps and vector-valued integral representations of operator-valued reproducing kernels. Concrete examples of refining translation invariant and finite Hilbert-Schmidt operator-valued reproducing kernels are provided. Other examples include refinement of Hessian of scalar-valued translation-invariant kernels and transformation kernels. Existence and properties of operator-valued reproducing kernels preserved during the refinement process are also investigated.
引用
收藏
页码:91 / 136
页数:46
相关论文
共 50 条
  • [1] Operator-valued Gaussian processes and their covariance kernels
    Jorgensen, Palle E. T.
    Tian, James
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2024, 27 (02)
  • [2] Refinement of Reproducing Kernels
    Xu, Yuesheng
    Zhang, Haizhang
    JOURNAL OF MACHINE LEARNING RESEARCH, 2009, 10 : 107 - 140
  • [3] Operator-valued positive definite kernels and differentiable universality
    Guella, J. C.
    ANALYSIS AND APPLICATIONS, 2022, 20 (04) : 681 - 735
  • [4] The operator-valued parallelism
    Zamani, Ali
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 505 : 282 - 295
  • [5] Remarks on Measurability of Operator-Valued Functions
    Blasco, Oscar
    Garcia-Bayona, Ismael
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 5147 - 5162
  • [6] Operator-Valued Triebel–Lizorkin Spaces
    Runlian Xia
    Xiao Xiong
    Integral Equations and Operator Theory, 2018, 90
  • [7] A short note on the similarity of operator-valued multishifts
    Ghara, Soumitra
    Kumar, Surjit
    Trivedi, Shailesh
    ARCHIV DER MATHEMATIK, 2024, 123 (03) : 263 - 274
  • [8] Weighted estimates for operator-valued Fourier multipliers
    Fackler, Stephan
    Hytonen, Tuomas P.
    Lindemulder, Nick
    COLLECTANEA MATHEMATICA, 2020, 71 (03) : 511 - 548
  • [9] Automorphisms on algebras of operator-valued Lipschitz maps
    Burgos, Maria
    Jimenez-Vargas, A.
    Villegas-Vallecillos, Moises
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 81 (1-2): : 127 - 144
  • [10] MAPPING PROPERTIES OF OPERATOR-VALUED BERGMAN PROJECTIONS
    Wang, Liang
    Xu, Bang
    Zhou, Dejian
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (03) : 1221 - 1234