Double quiver gauge theory and nearly Kahler flux compactifications

被引:13
|
作者
Popov, Alexander D. [1 ]
Szabo, Richard J. [2 ,3 ]
机构
[1] JINR, Bogoliubov Lab Theoret Phys, Dubna 141980, Moscow Region, Russia
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Maxwell Inst Math Sci, Edinburgh, Midlothian, Scotland
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2012年 / 02期
基金
英国科学技术设施理事会; 俄罗斯基础研究基金会;
关键词
Flux compactifications; Solitons Monopoles and Instantons; Field Theories in Higher Dimensions; NON-ABELIAN VORTICES; YANG-MILLS CONNECTIONS; DIMENSIONAL REDUCTION; INSTANTONS; EQUATIONS; GEOMETRY; FIELDS; VARIETIES; SURFACES; BUNDLES;
D O I
10.1007/JHEP02(2012)033
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider G-equivariant dimensional reduction of Yang-Mills theory with torsion on manifolds of the form M x G/H where M is a smooth manifold, and G/H is a compact six-dimensional homogeneous space provided with a never integrable almost complex structure and a family of SU(3)-structures which includes a nearly Kahler structure. We establish an equivalence between G-equivariant pseudo-holomorphic vector bundles on M x G/H and new quiver bundles on M associated to the double of a quiver Q, determined by the SU(3)-structure, with relations ensuring the absence of oriented cycles in Q. When M = R-2, we describe an equivalence between G-invariant solutions of Spin(7)-instanton equations on M x G/H and solutions of new quiver vortex equations on M. It is shown that generic invariant Spin(7)-instanton configurations correspond to quivers Q that contain non-trivial oriented cycles.
引用
收藏
页数:50
相关论文
共 46 条
  • [1] Double quiver gauge theory and nearly Kähler flux compactifications
    Alexander D. Popov
    Richard J. Szabo
    Journal of High Energy Physics, 2012
  • [2] Moduli stabilising in heterotic nearly Kahler compactifications
    Klaput, Michael
    Lukas, Andre
    Matti, Cyril
    Svanes, Eirik E.
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (01):
  • [3] Heterotic compactifications on nearly Kahler manifolds
    Lechtenfeld, Olaf
    Noelle, Christoph
    Popov, Alexander D.
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (09):
  • [4] Double Quiver Gauge Theory and BPS/CFT Correspondence
    Kimura, Taro
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [5] Nearly Kahler heterotic compactifications with fermion condensates
    Chatzistavrakidis, Athanasios
    Lechtenfeld, Olaf
    Popov, Alexander D.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (04):
  • [6] The fate of unstable gauge flux compactifications
    Burgess, C. P.
    Parameswaran, S. L.
    Zavala, I.
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (05):
  • [7] Warping the Kahler potential of F-theory/IIB flux compactifications
    Martucci, Luca
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (03):
  • [8] Sasakian quiver gauge theory on the Aloff Wallach space X1,1
    Geipel, Jakob C.
    NUCLEAR PHYSICS B, 2017, 916 : 279 - 303
  • [9] Rank two quiver gauge theory, graded connections and noncommutative vortices
    Lechtenfeld, Olaf
    Popov, Alexander D.
    Szabo, Richard J.
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (09):
  • [10] Flux compactifications, gauge algebras and De Sitter
    Dibitetto, Giuseppe
    Linares, Roman
    Roest, Diederik
    RECENT DEVELOPMENTS IN GRAVITATION AND BEC'S PHENOMENOLOGY, 2010, 1318 : 232 - +