Compressed Optimization of Device Architectures for Semiconductor Quantum Devices

被引:6
作者
Frees, Adam [1 ]
Gamble, John King [2 ,3 ]
Ward, Daniel R. [2 ]
Blume-Kohout, Robin [2 ]
Eriksson, M. A. [1 ]
Friesen, Mark [1 ]
Coppersmith, S. N. [1 ,4 ]
机构
[1] Univ Wisconsin Madison, Dept Phys, Madison, WI 53706 USA
[2] Sandia Natl Labs, Ctr Res Comp, Albuquerque, NM 87123 USA
[3] Microsoft Res, Quantum Architectures & Computat Grp, Redmond, WA 98052 USA
[4] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
关键词
SPIN QUBIT; ELECTRON-SPIN; DOT; FIDELITY; COHERENCE; GATE;
D O I
10.1103/PhysRevApplied.11.024063
中图分类号
O59 [应用物理学];
学科分类号
摘要
Recent advances in nanotechnology have enabled researchers to manipulate small collections of quantum-mechanical objects with unprecedented accuracy. In semiconductor quantum-dot qubits, this manipulation requires controlling the dot orbital energies, the tunnel couplings, and the electron occupations. These properties all depend on the voltages placed on the metallic electrodes that define the device, the positions of which are fixed once the device is fabricated. While there has been much success with small numbers of dots, as the number of dots grows, it will be increasingly useful to control these systems with as few electrode voltage changes as possible. Here, we introduce a protocol, which we call the "compressed optimization of device architectures" (CODA), in order both to efficiently identify sparse sets of voltage changes that control quantum systems and to introduce a metric that can be used to compare device designs. As an example of the former, we apply this method to simulated devices with up to 100 quantum dots and show that CODA automatically tunes devices more efficiently than other common nonlinear optimizers. To demonstrate the latter, we determine the optimal lateral scale for a triple quantum dot, yielding a simulated device that can be tuned with small voltage changes on a limited number of electrodes.
引用
收藏
页数:10
相关论文
共 49 条
  • [1] Computer-automated tuning of semiconductor double quantum dots into the single-electron regime
    Baart, T. A.
    Eendebak, P. T.
    Reichl, C.
    Wegscheider, W.
    Vandersypen, L. M. K.
    [J]. APPLIED PHYSICS LETTERS, 2016, 108 (21)
  • [2] Valley splitting in low-density quantum-confined heterostructures studied using tight-binding models
    Boykin, TB
    Klimeck, G
    Friesen, M
    Coppersmith, SN
    von Allmen, P
    Oyafuso, F
    Lee, S
    [J]. PHYSICAL REVIEW B, 2004, 70 (16): : 1 - 12
  • [3] Two-electron spin correlations in precision placed donors in silicon
    Broome, M. A.
    Gorman, S. K.
    House, M. G.
    Hile, S. J.
    Keizer, J. G.
    Keith, D.
    Hill, C. D.
    Watson, T. F.
    Baker, W. J.
    Hollenberg, L. C. L.
    Simmons, M. Y.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [4] BROYDEN CG, 1965, MATH COMPUT, V19, P557
  • [5] Stable signal recovery from incomplete and inaccurate measurements
    Candes, Emmanuel J.
    Romberg, Justin K.
    Tao, Terence
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) : 1207 - 1223
  • [6] Tunable Hybrid Qubit in a GaAs Double Quantum Dot
    Cao, Gang
    Li, Hai-Ou
    Yu, Guo-Dong
    Wang, Bao-Chuan
    Chen, Bao-Bao
    Song, Xiang-Xiang
    Xiao, Ming
    Guo, Guang-Can
    Jiang, Hong-Wen
    Hu, Xuedong
    Guo, Guo-Ping
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (08)
  • [7] Electrical Spin Driving by g-Matrix Modulation in Spin-Orbit Qubits
    Crippa, Alessandro
    Maurand, Romain
    Bourdet, Leo
    Kotekar-Patil, Dharmraj
    Amisse, Anthony
    Jehl, Xavier
    Sanquer, Marc
    Lavieville, Romain
    Bohuslavskyi, Heorhii
    Hutin, Louis
    Barraud, Sylvain
    Vinet, Maud
    Niquet, Yann-Michel
    De Franceschi, Silvano
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (13)
  • [8] Davies J.H., 1997, PHYS LOW DIMENSIONAL
  • [9] Charge Noise Spectroscopy Using Coherent Exchange Oscillations in a Singlet-Triplet Qubit
    Dial, O. E.
    Shulman, M. D.
    Harvey, S. P.
    Bluhm, H.
    Umansky, V.
    Yacoby, A.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (14)
  • [10] Diamond S, 2016, J MACH LEARN RES, V17