Rapid Antibiotic Susceptibility Testing Based on Bacterial Motion Patterns With Long Short-Term Memory Neural Networks

被引:17
作者
Iriya, Rafael [1 ,2 ]
Jing, Wenwen [2 ]
Syal, Karan [2 ]
Mo, Manni [2 ]
Chen, Chao [2 ]
Yu, Hui [3 ]
Hayde, Shelley E. [4 ,5 ]
Wang, Shaopeng [2 ]
Tao, Nongjian [1 ,2 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[2] Arizona State Univ, Biodesign Ctr Biosensors & Bioelect, Tempe, AZ 85287 USA
[3] Shanghai Jiao Tong Univ, Sch Biomed Engn, Inst Personalized Med, Shanghai 200030, Peoples R China
[4] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA
[5] Arizona State Univ, Biodesign Ctr Immunotherapy Vaccines & Virotherap, Tempe, AZ 85287 USA
基金
美国国家卫生研究院;
关键词
Antibiotic resistance; antibiotic susceptibility testing; AST; E; coli; single cell tracking; deep learning; neural networks; long short-term memory; LSTM; SINGLE-CELL GROWTH; ANTIMICROBIAL SUSCEPTIBILITY; SEGMENTATION; RESISTANCE; MOTILITY; CAPTURE; PROTEIN; SHIFT;
D O I
10.1109/JSEN.2020.2967058
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Antibiotic resistance is an increasing public health threat. To combat it, a fast method to determine the antibiotic susceptibility of infecting pathogens is required. Herewe present an optical imaging-basedmethod to track the motion of single bacterial cells and generate a model to classify active and inactive cells based on the motion patterns of the individual cells. The model includes an image-processing algorithm to segment individual bacterial cells and track the motion of the cells over time, and a deep learning algorithm (Long Short-Term Memory network) to learn and determine if a bacterial cell is active or inactive. By applying the model to human urine specimens spiked with an Escherichia coli lab strain, we show that the method can accurately perform antibiotic susceptibility testing as fast as 30 minutes for five commonly used antibiotics.
引用
收藏
页码:4940 / 4950
页数:11
相关论文
共 54 条
  • [1] Use of computer-assisted motion analysis for quantitative measurements of swimming behavior in peritrichously flagellated bacteria
    Amsler, CD
    [J]. ANALYTICAL BIOCHEMISTRY, 1996, 235 (01) : 20 - 25
  • [2] Roche gobbles Smarticles
    不详
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (10) : 1012 - 1012
  • [3] The antibiotic alarm
    不详
    [J]. NATURE, 2013, 495 (7440) : 141 - 141
  • [4] [Anonymous], M100S PERF STAND ANT
  • [5] [Anonymous], AMP
  • [6] [Anonymous], GOODMAN GILLMANS PHA
  • [7] [Anonymous], 2015, arXiv Learning
  • [8] Beucher S., 1979, Real-time Edge Motion Detect, P12
  • [9] The major allergen of the Parietaria pollen contains an LPS-binding region with immuno-modulatory activity
    Bonura, A.
    Corinti, S.
    Schiavi, E.
    Giacomazza, D.
    Gianguzza, F.
    Di Felice, G.
    Colombo, P.
    [J]. ALLERGY, 2013, 68 (03) : 297 - 303
  • [10] High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays
    Cermak, Nathan
    Olcum, Selim
    Delgado, Francisco Feijo
    Wasserman, Steven C.
    Payer, Kristofor R.
    Murakami, Mark A.
    Knudsen, Scott M.
    Kimmerling, Robert J.
    Stevens, Mark M.
    Kikuchi, Yuki
    Sandikci, Arzu
    Ogawa, Masaaki
    Agache, Vincent
    Baleras, Francois
    Weinstock, David M.
    Manalis, Scott R.
    [J]. NATURE BIOTECHNOLOGY, 2016, 34 (10) : 1052 - 1059