Emerging soluble organic redox materials for next-generation grid energy-storage applications

被引:4
作者
Zhan, Xiaowen [1 ]
Lu, Xiaochuan [2 ]
Reed, David M. [1 ]
Sprenkle, Vincent L. [1 ]
Li, Guosheng [1 ]
机构
[1] Pacific Northwest Natl Lab, Energy & Environm Directorate, Battery Mat & Syst Grp, Richland, WA 99354 USA
[2] North Carolina A&T State Univ, Dept Appl Engn Technol, Greensboro, NC 27411 USA
关键词
QUINONE FLOW BATTERY; LI-ION TRANSPORT; ELECTRODE MATERIALS; HIGH-CAPACITY; CHEMISTRY; PERFORMANCE; CATHOLYTES; CHALLENGES; PHENAZINE; DEVICES;
D O I
10.1557/mrc.2020.27
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Because of their structural versatility, fast redox reactivity, high storage capacity, sustainability, and environmental friendliness, soluble organic redox molecules have emerged as materials that have potential for use in energy-storage systems. Considering these advantages, this paper reviews recent progress in implementing such materials in aqueous soluble organic redox flow batteries and organic alkali metal/air batteries. We identify and discuss major challenges associated with molecular structures, cell configurations, and electrochemical parameters. Hopefully, we provide a general guidance for the future development of soluble organic redox materials for emerging energy-storage devices used in the electricity grid.
引用
收藏
页码:215 / 229
页数:15
相关论文
共 83 条
[1]  
[Anonymous], 2020, Annual Energy Outlook 2020 with Projections to 2050
[2]  
[Anonymous], 2013, DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA
[3]   A Neutral pH Aqueous Organic-Organometallic Redox Flow Battery with Extremely High Capacity Retention [J].
Beh, Eugene S. ;
De Porcellinis, Diana ;
Gracia, Rebecca L. ;
Xia, Kay T. ;
Gordon, Roy G. ;
Aziz, Michael J. .
ACS ENERGY LETTERS, 2017, 2 (03) :639-644
[4]   "Ni-Less" Cathodes for High Energy Density, Intermediate Temperature Na-NiCl2 Batteries [J].
Chang, Hee-Jung ;
Lu, Xiaochuan ;
Bonnett, Jeffery F. ;
Canfield, Nathan L. ;
Son, Sori ;
Park, Yoon-Cheol ;
Jung, Keeyoung ;
Sprenkle, Vincent L. ;
Li, Guosheng .
ADVANCED MATERIALS INTERFACES, 2018, 5 (10)
[5]   Progress in electrical energy storage system: A critical review [J].
Chen, Haisheng ;
Cong, Thang Ngoc ;
Yang, Wei ;
Tan, Chunqing ;
Li, Yongliang ;
Ding, Yulong .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2009, 19 (03) :291-312
[6]   A high-rate and long-life organic-oxygen battery [J].
Cong, Guangtao ;
Wang, Wanwan ;
Lai, Nien-Chu ;
Liang, Zhuojian ;
Lu, Yi-Chun .
NATURE MATERIALS, 2019, 18 (04) :390-+
[7]   A Sulfonate-Functionalized Viologen Enabling Neutral Cation Exchange, Aqueous Organic Redox Flow Batteries toward Renewable Energy Storage [J].
DeBruler, Camden ;
Hu, Bo ;
Moss, Jared ;
Luo, Jian ;
Liu, T. Leo .
ACS ENERGY LETTERS, 2018, 3 (03) :663-668
[8]   Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries [J].
Doris, Sean E. ;
Ward, Ashleigh L. ;
Baskin, Artem ;
Frischmann, Peter D. ;
Gavvalapalli, Nagarjuna ;
Chenard, Etienne ;
Sevov, Christo S. ;
Prendergast, David ;
Moore, Jeffrey S. ;
Helms, Brett A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (06) :1595-1599
[9]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[10]   Fundamentals of inorganic solid-state electrolytes for batteries [J].
Famprikis, Theodosios ;
Canepa, Pieremanuele ;
Dawson, James A. ;
Islam, M. Saiful ;
Masquelier, Christian .
NATURE MATERIALS, 2019, 18 (12) :1278-1291