Stopping-set enumerator approximations for finite-length protograph LDPC codes

被引:2
|
作者
Fu, Kaiann [1 ]
Anastasopoulos, Achilleas [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
关键词
D O I
10.1109/ISIT.2007.4557666
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Asymptotic analysis of low-density parity-check (LDPC) code weight and stopping-set enumerators, for codewords and stopping sets which grow linearly with codelength, has aided in designing codes with linear minimum distance and low error floors. However, the analysis cannot capture the behavior of codewords and stopping sets that grow sublinearly with codelength. Thus, it is unclear how well the analysis describes behavior for finite codelengths, particularly for short codes. In this paper, we provide another perspective on protograph-based and standard LDPC ensemble enumerators, based on analysis of stopping sets with sublinear growth, which brings new insight into sublinear stopping-set behavior, protograph structure, and precoding. Using approximations to the stopping-set enumerators, we show that for stopping sets that grow at most logarithmically with codelength, the enumerators follow a polynomial relationship with codelength, unlike the exponential relationship for linearly-growing stopping sets. Further, we analyze for what stopping-set sizes and codelengths the approximations apply.
引用
收藏
页码:2946 / 2950
页数:5
相关论文
共 50 条
  • [31] On Unequal Error Protection of Finite-Length LDPC Codes Over BECs: A Scaling Approach
    Djahanshahi, Amir H.
    Siegel, P. H.
    Milstein, L. B.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 1824 - 1828
  • [32] Finite-length performance of spatially-coupled LDPC codes under TEP decoding
    Olmos, Pablo M.
    Perez-Cruz, Fernando
    Salamanca, Luis
    Jose Murillo-Fuentes, Juan
    2012 IEEE INFORMATION THEORY WORKSHOP (ITW), 2012, : 492 - 496
  • [33] Finite-Length Algebraic Spatially-Coupled Quasi-Cyclic LDPC Codes
    Liu, Keke
    El-Khamy, Mostafa
    Lee, Jungwon
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2016, 34 (02) : 329 - 344
  • [34] IR-HARQ Schemes with Finite-Length Punctured LDPC Codes over the BEC
    Andriyanova, Iryna
    Soljanin, Emina
    2009 IEEE INFORMATION THEORY WORKSHOP (ITW 2009), 2009, : 125 - 129
  • [35] Locally-Optimized Reweighted Belief Propagation for Decoding Finite-Length LDPC codes
    Liu, Jingjing
    de Lamare, Rodrigo C.
    Wymeersch, Henk
    2013 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2013, : 4311 - 4316
  • [36] Design and Optimization of LDPC Precoded Finite-Length BATS Codes Under BP Decoding
    Zhang, Wenrui
    Zhu, Mingyang
    Jiang, Ming
    Hu, Nan
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (12) : 3151 - 3155
  • [37] A Finite-Length Algorithm for LDPC Codes Without Repeated Edges on the Binary Erasure Channel
    Johnson, Sarah J.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (01) : 27 - 32
  • [38] Finite-Length Scaling of SC-LDPC Codes With a Limited Number of Decoding Iterations
    Sokolovskii, Roman
    Graell i Amat, Alexandre
    Brannstrom, Fredrik
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (08) : 4869 - 4888
  • [39] Finite-Length Scaling of Non-Binary (c, d) LDPC Codes for the BEC
    Andriyanova, Iryna
    Kasai, Kenta
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 714 - 718
  • [40] A Scaling Law to Predict the Finite-Length Performance of Spatially-Coupled LDPC Codes
    Olmos, Pablo M.
    Urbanke, Ruediger L.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (06) : 3164 - 3184