Carbon Dioxide to Methanol: The Aqueous Catalytic Way at Room Temperature

被引:88
作者
Sordakis, Katerina [1 ]
Tsurusaki, Akihiro [2 ]
Iguchi, Masayuki [3 ]
Kawanami, Hajime [3 ]
Himeda, Yuichiro [2 ]
Laurenczy, Gabor [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Ave Forel 2, CH-1015 Lausanne, Switzerland
[2] Natl Inst Adv Ind Sci & Technol, Tsukuba Cent 5,1-1-1 Higashi, Tsukuba, Ibaraki 3058565, Japan
[3] Natl Inst Adv Ind Sci & Technol, Miyagino Ku, 4-2-1 Nigatake, Sendai, Miyagi 9838551, Japan
基金
日本科学技术振兴机构; 瑞士国家科学基金会;
关键词
carbon dioxide; formic acid; homogeneous; hydrogenation; methanol; FORMIC-ACID; HOMOGENEOUS HYDROGENATION; IRIDIUM CATALYST; CO2; DEHYDROGENATION; DISPROPORTIONATION; MEDIA; HYDRIDE; STORAGE;
D O I
10.1002/chem.201603407
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon dioxide may constitute a source of chemicals and fuels if efficient and renewable processes are developed that directly utilize it as feedstock. Two of its reduction products are formic acid and methanol, which have also been proposed as liquid organic chemical carriers in sustainable hydrogen storage. Here we report that both the hydrogenation of carbon dioxide to formic acid and the disproportionation of formic acid into methanol can be realized at ambient temperature and in aqueous, acidic solution, with an iridium catalyst. The formic acid yield is maximized in water without additives, while acidification results in complete (98%) and selective (96%) formic acid disproportionation into methanol. These promising features in combination with the low reaction temperatures and the absence of organic solvents and additives are relevant for a sustainable hydrogen/methanol economy.
引用
收藏
页码:15605 / 15608
页数:4
相关论文
共 30 条
[1]   Isolation and crystal structure of a water-soluble iridium hydride: A robust and highly active catalyst for acid-catalyzed transfer hydrogenations of carbonyl compounds in acidic media [J].
Abura, T ;
Ogo, S ;
Watanabe, Y ;
Fukuzumi, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (14) :4149-4154
[2]  
Aresta M., 2010, CARBON DIOXIDE CHEM
[3]  
Balaraman E., 2011, ANGEW CHEM INT EDIT, V123, P11906, DOI DOI 10.1002/ANGE.201106612
[4]   Unprecedented Catalytic Hydrogenation of Urea Derivatives to Amines and Methanol [J].
Balaraman, Ekambaram ;
Ben-David, Yehoshoa ;
Milstein, David .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (49) :11702-11705
[5]  
Balaraman E, 2011, NAT CHEM, V3, P609, DOI [10.1038/NCHEM.1089, 10.1038/nchem.1089]
[6]   Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst [J].
Boddien, Albert ;
Mellmann, Doerthe ;
Gaertner, Felix ;
Jackstell, Ralf ;
Junge, Henrik ;
Dyson, Paul J. ;
Laurenczy, Gabor ;
Ludwig, Ralf ;
Beller, Matthias .
SCIENCE, 2011, 333 (6050) :1733-1736
[7]   [IRH2(H2)2P(C6H11)32]+ - A NON-CLASSICAL POLYHYDRIDE COMPLEX [J].
CRABTREE, RH ;
LAVIN, M .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1985, (23) :1661-1662
[8]   Hydrogen storage: beyond conventional methods [J].
Dalebrook, Andrew F. ;
Gan, Weijia ;
Grasemann, Martin ;
Moret, Severine ;
Laurenczy, Gabor .
CHEMICAL COMMUNICATIONS, 2013, 49 (78) :8735-8751
[9]  
Han Z., 2012, Angew. Chem., V124, P13218
[10]   Catalytic Hydrogenation of Cyclic Carbonates: A Practical Approach from CO2 and Epoxides to Methanol and Diols [J].
Han, Zhaobin ;
Rong, Liangce ;
Wu, Jiang ;
Zhang, Lei ;
Wang, Zheng ;
Ding, Kuiling .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (52) :13041-13045