Tubulin sorting during dimerization in vivo

被引:16
作者
Hoyle, HD [1 ]
Turner, FR
Brunick, L
Raff, EC
机构
[1] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA
[2] Indiana Univ, Indiana Mol Biol Inst, Bloomington, IN 47405 USA
关键词
D O I
10.1091/mbc.12.7.2185
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We demonstrate sorting of beta -tubulins during dimerization in the Drosophila male germ line. Different beta -tubulin isoforms exhibit distinct affinities for alpha -tubulin during dimerization. Our data suggest that differences in dimerization properties are important in determining isoform-specific microtubule functions. The differential use of beta -tubulin during dimerization reveals structural parameters of the tubulin heterodimer not discernible in the resolved three-dimensional structure. We show that the variable beta -tubulin carboxyl terminus, a surface feature in the heterodimer and in microtubules, and which is disordered in the crystallographic structure, is of key importance in forming a stable alpha-beta heterodimer. If the availability of alpha -tubulin is limiting, alpha-beta dimers preferentially incorporate intact beta -tubulins rather than a beta -tubulin missing the carboxyl terminus (beta2 DeltaC). When alpha -tubulin is not limiting, beta2 DeltaC forms stable alpha-beta heterodimers. Once dimers are formed, no further sorting occurs during microtubule assembly: alpha-beta2 DeltaC dimers are incorporated into axonemes in proportion to their contribution to the total dimer pool. Co-incorporation of beta2 DeltaC and wild-type beta2-tubulin results in nonmotile axonemes because of a disruption of the periodicity of nontubulin axonemal elements. Our data show that the beta -tubulin carboxyl terminus has two distinct roles: 1) forming the alpha-beta heterodimer, important for all microtubules and 2) providing contacts for nontubulin components required for specific microtubule structures, such as axonemes.
引用
收藏
页码:2185 / 2194
页数:10
相关论文
共 40 条
[1]   CHARACTERIZATION AND DEVELOPMENTAL EXPRESSION OF BETA-TUBULIN GENES IN DROSOPHILA-MELANOGASTER [J].
BIALOJAN, S ;
FALKENBURG, D ;
RENKAWITZPOHL, R .
EMBO JOURNAL, 1984, 3 (11) :2543-2548
[2]   Genetic analysis of the Drosophila beta 3-tubulin gene demonstrates that the microtubule cytoskeleton in the cells of the visceral mesoderm is required for morphogenesis of the midgut endoderm [J].
Dettman, RW ;
Turner, FR ;
Raff, EC .
DEVELOPMENTAL BIOLOGY, 1996, 177 (01) :117-135
[3]  
DETTMAN RW, 2001, IN PRESS GENETICS, V158
[4]   POSTTRANSLATIONAL GLUTAMYLATION OF ALPHA-TUBULIN [J].
EDDE, B ;
ROSSIER, J ;
LECAER, JP ;
DESBRUYERES, E ;
GROS, F ;
DENOULET, P .
SCIENCE, 1990, 247 (4938) :83-85
[5]   TISSUE-SPECIFIC MICROTUBULE FUNCTIONS IN DROSOPHILA SPERMATOGENESIS REQUIRE THE BETA-2-TUBULIN ISOTYPE-SPECIFIC CARBOXY-TERMINUS [J].
FACKENTHAL, JD ;
TURNER, FR ;
RAFF, EC .
DEVELOPMENTAL BIOLOGY, 1993, 158 (01) :213-227
[6]  
FONTALBA A, 1995, J MOL BIOL, V246, P628, DOI 10.1016/S0022-2836(05)80112-3
[7]   A NOVEL COCHAPERONIN THAT MODULATES THE ATPASE ACTIVITY OF CYTOPLASMIC CHAPERONIN [J].
GAO, Y ;
WALDEN, PD ;
LEWIS, SA ;
AMPE, C ;
ROMMELAERE, H ;
VANDEKERCKHOVE, J ;
COWAN, NJ ;
MELKI, R .
JOURNAL OF CELL BIOLOGY, 1994, 125 (05) :989-996
[8]   A CYTOPLASMIC CHAPERONIN THAT CATALYZES BETA-ACTIN FOLDING [J].
GAO, YJ ;
THOMAS, JO ;
CHOW, RL ;
LEE, GH ;
COWAN, NJ .
CELL, 1992, 69 (06) :1043-1050
[9]  
Gelbart WM, 1999, NUCLEIC ACIDS RES, V27, P85, DOI 10.1093/nar/27.1.85
[10]  
HAZELRIGG T, 1983, GENETICS, V105, P581