Bistable traveling waves for time periodic reaction-diffusion equations in strip with Dirichlet boundary condition

被引:2
作者
Fang, Jian [1 ]
Shao, Penglong [1 ,2 ]
Shi, Junping [2 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Heilongjiang, Peoples R China
[2] William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
Bistability structure; Periodic traveling wave; Dirichlet boundary condition; MONOTONE SEMIFLOWS; EXACT MULTIPLICITY; POSITIVE SOLUTIONS; FRONTS; STABILITY; EXISTENCE; PROPAGATION; SPEEDS; MODEL;
D O I
10.1016/j.jde.2022.08.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of bistable traveling wave solutions for time periodic reaction-diffusion equations in straight strips subject to the Dirichlet boundary condition. We first employ a monotone dynamical system framework to establish the existence of such a wave by assuming a bistability structure in terms of multiplicity and stability of periodic solutions in the section of the strip, which is then realized under a set of sufficient explicit conditions; in particular, the bistability structure appears if the reaction term is a time periodic smooth perturbation of the nonlinearity lambda u(1 - u)(u - a) when a is an element of (0, 1/2) and lambda > lambda* for some lambda* > 0. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:350 / 371
页数:22
相关论文
共 36 条
[1]   Periodic traveling waves and locating oscillating patterns in multidimensional domains [J].
Alikakos, ND ;
Bates, PW ;
Chen, XF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (07) :2777-2805
[2]  
[Anonymous], 1991, J DYN DIFFER EQU
[3]   Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system [J].
Bao, Xiongxiong ;
Wang, Zhi-Cheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2402-2435
[4]   Traveling waves in a convolution model for phase transitions [J].
Bates, PW ;
Fife, PC ;
Ren, XF ;
Wang, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (02) :105-136
[5]   MULTIDIMENSIONAL TRAVELING-WAVE SOLUTIONS OF A FLAME PROPAGATION MODEL [J].
BERESTYCKI, H ;
LARROUTUROU, B ;
LIONS, PL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (01) :33-49
[6]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[7]   Front blocking and propagation in cylinders with varying cross section [J].
Berestycki, Henri ;
Bouhours, Juliette ;
Chapuisat, Guillemette .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (03)
[8]   Fronts in extended systems of bistable maps coupled via convolutions [J].
Coutinho, R ;
Fernandez, B .
NONLINEARITY, 2004, 17 (01) :23-47
[9]   Admissible speeds in spatially periodic bistable reaction-diffusion equations [J].
Ding, Weiwei ;
Giletti, Thomas .
ADVANCES IN MATHEMATICS, 2021, 389
[10]   Bistable Pulsating Fronts for Reaction-Diffusion Equations in a Periodic Habitat [J].
Ding, Weiwei ;
Hamel, Francois ;
Zhao, Xiao-Qiang .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2017, 66 (04) :1189-1265