On the convergence analysis of inexact hybrid extragradient proximal point algorithms for maximal monotone operators

被引:14
作者
Ceng, Lu-Chuan [2 ]
Yao, Jen-Chih [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
关键词
inexact hybrid extragradient proximal point algorithms; inexact iterative procedures; maximal monotone operator; weak convergence; strong convergence;
D O I
10.1016/j.cam.2007.02.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce general iterative methods for finding zeros of a maximal monotone operator in a Hilbert space which unify two previously studied iterative methods: relaxed proximal point algorithm [H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math Soc. 66 (2002) 240-256] and inexact hybrid extragradient proximal point algorithm [R.S. Burachik, S. Scheimberg, B.F. Svaiter, Robustness of the hybrid extragradient proximal-point algorithm, J. Optim. Theory Appl. 111 (2001) 117-136]. The paper establishes both weak convergence and strong convergence of the methods under suitable assumptions on the algorithm parameters. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:326 / 338
页数:13
相关论文
共 28 条
[1]  
Alexandre P, 1998, RAIRO-MATH MODEL NUM, V32, P223
[2]   ON SUBDIFFERENTIABILITY OF CONVEX FUNCTIONS [J].
BRONDSTED, A ;
ROCKAFELLAR, RT .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (04) :605-+
[3]   Robustness of the hybrid extragradient proximal-point algorithm [J].
Burachik, RS ;
Scheimberg, S ;
Svaiter, BF .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 111 (01) :117-136
[4]   Enlargement of monotone operators with applications to variational inequalities [J].
Burachik, RS ;
Iusem, AN ;
Svaiter, BF .
SET-VALUED ANALYSIS, 1997, 5 (02) :159-180
[5]   ε-Enlargements of maximal monotone operators in Banach spaces [J].
Burachik, RS ;
Svaiter, BF .
SET-VALUED ANALYSIS, 1999, 7 (02) :117-132
[6]  
BURACHIK RS, 1999, EPSILON ENLARGEMENTS, P25
[7]   Approximate iterations in Bregman-function-based proximal algorithms [J].
Eckstein, J .
MATHEMATICAL PROGRAMMING, 1998, 83 (01) :113-123
[8]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[9]   FINITE TERMINATION OF THE PROXIMAL POINT ALGORITHM [J].
FERRIS, MC .
MATHEMATICAL PROGRAMMING, 1991, 50 (03) :359-366
[10]   NEW PROXIMAL POINT ALGORITHMS FOR CONVEX MINIMIZATION [J].
Gueler, Osman .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (04) :649-664