Markov chain Monte Carlo for a hyperbolic Bayesian inverse problem in traffic flow modeling

被引:1
作者
Coullon, Jeremie [1 ]
Pokern, Yvo [2 ]
机构
[1] Univ Lancaster, Math & Stat, Lancaster LA1 4YW, England
[2] UCL, Stat Sci, Gower St, London WC1E 6BT, England
来源
DATA-CENTRIC ENGINEERING | 2022年 / 3卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
Bayesian inverse problem; MCMC; motorway traffic flow; traffic engineering; uncertainty quantification; MCMC METHODS; WAVES;
D O I
10.1017/dce.2022.3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a Bayesian approach to fitting motorway traffic flow models remains rare in the literature, we empirically explore the sampling challenges this approach offers which have to do with the strong correlations and multimodality of the posterior distribution. In particular, we provide a unified statistical model to estimate using motorway data both boundary conditions and fundamental diagram parameters in a motorway traffic flow model due to Lighthill, Whitham, and Richards known as LWR. This allows us to provide a traffic flow density estimation method that is shown to be superior to two methods found in the traffic flow literature. To sample from this challenging posterior distribution, we use a state-of-the-art gradient-free function space sampler augmented with parallel tempering.
引用
收藏
页数:23
相关论文
共 38 条
  • [1] Towards optimal scaling of metropolis-coupled Markov chain Monte Carlo
    Atchade, Yves F.
    Roberts, Gareth O.
    Rosenthal, Jeffrey S.
    [J]. STATISTICS AND COMPUTING, 2011, 21 (04) : 555 - 568
  • [2] Resurrection of "second order" models of traffic flow
    Aw, A
    Rascle, M
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (03) : 916 - 938
  • [3] DYNAMICAL MODEL OF TRAFFIC CONGESTION AND NUMERICAL-SIMULATION
    BANDO, M
    HASEBE, K
    NAKAYAMA, A
    SHIBATA, A
    SUGIYAMA, Y
    [J]. PHYSICAL REVIEW E, 1995, 51 (02): : 1035 - 1042
  • [4] Geometric MCMC for infinite-dimensional inverse problems
    Beskos, Alexandros
    Girolami, Mark
    Lan, Shiwei
    Farrell, Patrick E.
    Stuart, Andrew M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 335 : 327 - 351
  • [5] Critical analysis and perspectives on the hydrodynamic approach for the mathematical theory of vehicular traffic
    Bonzani, I.
    Cumin, L. M. Gramani
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (3-4) : 526 - 541
  • [6] Clawpack Development Team, 2017, Zenodo
  • [7] MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
    Cotter, S. L.
    Roberts, G. O.
    Stuart, A. M.
    White, D.
    [J]. STATISTICAL SCIENCE, 2013, 28 (03) : 424 - 446
  • [8] Bayesian inverse problems for functions and applications to fluid mechanics
    Cotter, S. L.
    Dashti, M.
    Robinson, J. C.
    Stuart, A. M.
    [J]. INVERSE PROBLEMS, 2009, 25 (11)
  • [9] Coullon J, 2019, THESIS U COLL LONDON
  • [10] Ensemble sampler for infinite-dimensional inverse problems
    Coullon, Jeremie
    Webber, Robert J.
    [J]. STATISTICS AND COMPUTING, 2021, 31 (03)