On some generalizations of the diophantine equation s(1k+2k + ... + xk) + r = dyn

被引:6
|
作者
Rakaczki, Csaba [1 ,2 ]
机构
[1] Univ Debrecen, Hungarian Acad Sci, Number Theory Res Grp, Inst Math, H-4010 Debrecen, Hungary
[2] Univ Miskolc, Inst Math, H-3515 Miskolc, Hungary
关键词
Bernoulli polynomials; higher degree equations; ZEROS;
D O I
10.4064/aa151-2-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:201 / 216
页数:16
相关论文
共 6 条
  • [1] On the Diophantine equation 1k+2k +...+ xk = yn
    Bennett, MA
    Gyory, K
    Pintér, A
    COMPOSITIO MATHEMATICA, 2004, 140 (06) : 1417 - 1431
  • [2] On the equation 1k+2k + ... + xk=yn
    Györy, K
    Pintér, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2003, 62 (3-4): : 403 - 414
  • [3] On the Diophantine equation (x+1)k (x+2)k + . . . plus (lx)k = yn
    Soydan, Gokhan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 91 (3-4): : 369 - 382
  • [4] The Diophantine equation (x+1)k + (x+2)k + ... plus (lx)k = yn revisted
    Bartoli, Daniele
    Soydan, Gokhan
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2020, 96 (1-2): : 111 - 120
  • [5] On the number of solutions of the equation 1k+2k+•••+(x-1)k=yz
    Brindza, B
    Pintér, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 56 (3-4): : 271 - 277
  • [6] Zeros of normalized combinations of ξ(k) (s) on Re(s)=1/2
    Chaubey, Sneha
    Malik, Amita
    Robles, Nicolas
    Zaharescu, Alexandru
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (02) : 1771 - 1785