A simple topological model with continuous phase transition

被引:6
|
作者
Baroni, F. [1 ]
机构
[1] Univ Florence, Dipartimento Fis, I-50019 Sesto Fiorentino, FI, Italy
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2011年
关键词
rigorous results in statistical mechanics; classical phase transitions (theory); STATISTICAL-MECHANICS; DYNAMICS;
D O I
10.1088/1742-5468/2011/08/P08010
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In the area of topological and geometric treatment of phase transitions and symmetry breaking in Hamiltonian systems, some general sufficient conditions for these phenomena in Z(2)-symmetric systems (i.e. invariant under reflection of coordinates) were found in a recent paper. In this paper we present a simple topological model satisfying the above conditions, hoping to shed light on the mechanism which causes this phenomenon in more general physical models. The symmetry breaking is proved by a continuous magnetization with a nonanalytic point in correspondence with a critical temperature which divides the broken symmetry phase from the unbroken one. A particularity with respect to the common pictures of a phase transition is that the nonanalyticity of the magnetization is not accompanied by a nonanalytic behavior of the free energy.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Overview of the superradiant phase transition: the Dicke model
    Tonchev, N. S.
    Brankov, J. G.
    Zagrebnov, V. A.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2009, 11 (09): : 1142 - 1149
  • [32] Adiabatic quenches and characterization of amplitude excitations in a continuous quantum phase transition
    Hoang, Thai M.
    Bharath, Hebbe M.
    Boguslawski, Matthew J.
    Anquez, Martin
    Robbins, Bryce A.
    Chapman, Michael S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (34) : 9475 - 9479
  • [33] Solid phase properties and crystallization in simple model systems
    Turci, F.
    Schilling, T.
    Yamani, M. H.
    Oettel, M.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (03) : 421 - 438
  • [34] Colossal topological Hall effect at the transition between isolated and lattice-phase interfacial skyrmions
    Raju, M.
    Petrovic, A. P.
    Yagil, A.
    Denisov, K. S.
    Duong, N. K.
    Goebel, B.
    Sasioglu, E.
    Auslaender, O. M.
    Mertig, I.
    Rozhansky, I. V.
    Panagopoulos, C.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [35] Quantum phase transition of the Jaynes-Cummings model
    Liu, Cheng
    Huang, Jin-Feng
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2024, 67 (01)
  • [36] Towards temperature-induced topological phase transition in SnTe: A first-principles study
    Querales-Flores, Jose D.
    Aguado-Puente, Pablo
    Dangic, Dorde
    Cao, Jiang
    Chudzinski, Piotr
    Todorov, Tchavdar N.
    Gruning, Myrta
    Fahy, Stephen
    Savic, Ivana
    PHYSICAL REVIEW B, 2020, 101 (23)
  • [37] Polarization inhibits the phase transition of Axelrod's model
    Gracia-Lazaro, Carlos
    Brigatti, Edgardo
    Hernandez, Alexis R.
    Moreno, Yamir
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [38] Quantum Zeno effect as a topological phase transition in full counting statistics and spin noise spectroscopy
    Li, Fuxiang
    Ren, Jie
    Sinitsyn, Nikolai A.
    EPL, 2014, 105 (02)
  • [39] A phase transition in the O?Doherty-Anstey model
    Innanen, Kristopher A.
    GEOPHYSICS, 2023, 88 (02) : T75 - T82
  • [40] Cooperative propagation and directional phase transition of topological solitons in multi-stable mechanical metamaterials
    Zhou, Wu
    Wang, Yi-Ze
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2023, 175