Neural Networks and Support Vector Machine Models Applied to Energy Consumption Optimization in Semiautogeneous Grinding

被引:46
作者
Curilem, Millaray
Acuna, Gonzalo
Cubillos, Francisco
Vyhmeister, Eduardo
机构
来源
PRES 2011: 14TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, PTS 1 AND 2 | 2011年 / 25卷
关键词
MILL;
D O I
10.3303/CET1125127
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Semiautogenous (SAG) mills for ore grinding are large energy consumption equipments. The SAG energy consumption is strongly related to the fill level of the mill. Hence, on-line information of the mill fill level is a relevant state variable to monitor and drive in SAG operations. Unfortunately, due to the prevailing conditions in a SAG mill, it is difficult to measure and represent from first principle model the state of the mill fill level. Alternative approaches to tackle this problem consist in designing appropriate data-driven models, such as Neural Networks (NN) and Support Vector Machine (SVM). In this paper, NN and a SVM (specifically a Least Square-SVM) are used as Nonlinear autoregressive with exogenous inputs (NARX) and Nonlinear autoregressive moving average with exogenous inputs (NARMAX) models for on-line estimation of the filling level of a SAG mill. Good performances of the developed models could allow implementation in SAG operation/control hence optimizing its energy consumption.
引用
收藏
页码:761 / 766
页数:6
相关论文
共 13 条
[1]  
Acuña G, 2009, LECT NOTES ARTIF INT, V5845, P478, DOI 10.1007/978-3-642-05258-3_42
[2]   Effects of grinding media shapes on load behaviour and mill power in a dry ball mill [J].
Lameck, N. S. ;
Kiangi, K. K. ;
Moys, M. H. .
MINERALS ENGINEERING, 2006, 19 (13) :1357-1361
[3]   INPUT OUTPUT PARAMETRIC MODELS FOR NON-LINEAR SYSTEMS .1. DETERMINISTIC NON-LINEAR SYSTEMS [J].
LEONTARITIS, IJ ;
BILLINGS, SA .
INTERNATIONAL JOURNAL OF CONTROL, 1985, 41 (02) :303-328
[4]  
Magne L., 1997, REV MINERALES I INGE, V52
[5]   NEURAL NETWORKS AND NONLINEAR ADAPTIVE FILTERING - UNIFYING CONCEPTS AND NEW ALGORITHMS [J].
NERRAND, O ;
ROUSSELRAGOT, P ;
PERSONNAZ, L ;
DREYFUS, G ;
MARCOS, S .
NEURAL COMPUTATION, 1993, 5 (02) :165-199
[6]   Energy and greenhouse gas impacts of mining and mineral processing operations [J].
Norgate, T. ;
Haque, N. .
JOURNAL OF CLEANER PRODUCTION, 2010, 18 (03) :266-274
[7]   Dynamic modelling and simulation of semi-autogenous mills [J].
Salazar, J. L. ;
Magne, L. ;
Acuna, G. ;
Cubillos, F. .
MINERALS ENGINEERING, 2009, 22 (01) :70-77
[8]   New support vector algorithms [J].
Schölkopf, B ;
Smola, AJ ;
Williamson, RC ;
Bartlett, PL .
NEURAL COMPUTATION, 2000, 12 (05) :1207-1245
[9]  
Suykens JAK, 2001, IEEE IMTC P, P287, DOI 10.1109/IMTC.2001.928828
[10]  
Van Gestel T., 2002, Least Squares Support Vector Machines