The non-smooth pitchfork bifurcation: a renormalization analysis

被引:0
作者
Adamson, L. N. C. [1 ]
Osbaldestin, A. H. [1 ]
机构
[1] Univ Portsmouth, Dept Math, Portsmouth PO1 3HF, Hants, England
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2015年 / 30卷 / 02期
关键词
renormalization; non-smooth pitchfork bifurcation; strange non-chaotic attractor; STRANGE NONCHAOTIC ATTRACTORS; BARRIER BILLIARD; SPECTRA;
D O I
10.1080/14689367.2014.1001722
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a renormalization group analysis of a system exhibiting a non-smooth pitchfork bifurcation to a strange non-chaotic attractor. For parameter choices satisfying two specified conditions, self-similar behaviour of the attractor on and near the bifurcation curve can be observed, which corresponds to a periodic orbit of an underlying renormalization operator. We examine the scaling properties for various parameter choices including the so-called pitchfork critical point. Finally, we study the autocorrelation function for the system and show that it is equivalent to that present in symmetric barrier billiards.
引用
收藏
页码:224 / 240
页数:17
相关论文
共 17 条
  • [1] Renormalisation of correlations in a barrier billiard: Quadratic irrational trajectories
    Adamson, L. N. C.
    Osbaldestin, A. H.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2014, 270 : 30 - 45
  • [2] Self-similar correlations in a barrier billiard
    Chapman, JR
    Osbaldestin, AH
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2003, 180 (1-2) : 71 - 91
  • [3] EVOLUTION OF ATTRACTORS IN QUASIPERIODICALLY FORCED SYSTEMS - FROM QUASIPERIODIC TO STRANGE NONCHAOTIC TO CHAOTIC
    DING, MZ
    GREBOGI, C
    OTT, E
    [J]. PHYSICAL REVIEW A, 1989, 39 (05): : 2593 - 2598
  • [4] DRISCOLL A., 2014, Chebfun Guide
  • [5] Renormalization of correlations and spectra of a strange non-chaotic attractor
    Feudel, U
    Pikovsky, A
    Politi, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (17): : 5297 - 5311
  • [6] Feudel U., 2006, STRANGE NONCHAOTIC A
  • [7] Non-smooth pitchfork bifurcations
    Glendinning, P
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2004, 4 (02): : 457 - 464
  • [8] STRANGE ATTRACTORS THAT ARE NOT CHAOTIC
    GREBOGI, C
    OTT, E
    PELIKAN, S
    YORKE, JA
    [J]. PHYSICA D, 1984, 13 (1-2): : 261 - 268
  • [9] Keller G, 1996, FUND MATH, V151, P139
  • [10] BIRTH OF A STRANGE NONCHAOTIC ATTRACTOR - A RENORMALIZATION-GROUP ANALYSIS
    KUZNETSOV, SP
    PIKOVSKY, AS
    FEUDEL, U
    [J]. PHYSICAL REVIEW E, 1995, 51 (03) : R1629 - R1632