OPTIMAL MULTIPLE STOPPING TIME PROBLEM

被引:38
作者
Kobylanski, Magdalena [1 ]
Quenez, Marie-Claire [2 ]
Rouy-Mironescu, Elisabeth [3 ]
机构
[1] Univ Marne La Vallee, CNRS, UMR LAMA 8050, F-77454 Marne La Vallee 2, France
[2] Univ Denis Diderot P7, CNRS, UMR LPMA 7599, F-75251 Paris 05, France
[3] Univ Lyon, Ecole Cent Lyon, Inst Camille Jordan, F-69622 Villeurbanne, France
关键词
Optimal stopping; optimal multiple stopping; aggregation; swing options; American options;
D O I
10.1214/10-AAP727
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the optimal multiple stopping time problem defined for each stopping time S by v(S) = ess sup(tau 1), ... , (tau d) (>=) (S) E[psi(tau(1), ... , tau(d))vertical bar F-S]. The key point is the construction of a new reward phi such that the value function v(S) also satisfies v(S) = ess sup(theta >= S) E[phi(theta)vertical bar F-S]. This new reward phi is not a right-continuous adapted process as in the classical case, but a family of random variables. For such a reward, we prove a new existence result for optimal stopping times under weaker assumptions than in the classical case. This result is used to prove the existence of optimal multiple stopping times for v(S) by a constructive method. Moreover, under strong regularity assumptions on psi, we show that the new reward phi can be aggregated by a progressive process. This leads to new applications, particularly in finance (applications to American options with multiple exercise times).
引用
收藏
页码:1365 / 1399
页数:35
相关论文
共 12 条
[1]  
[Anonymous], Lecture Notes in Math.
[2]  
[Anonymous], 1975, North-Holland Mathematical Library
[3]  
[Anonymous], 1975, PROBABILITES POTENTI
[4]   Optimal multiple stopping of linear Diffusions [J].
Carmona, Rene ;
Dayanik, Savas .
MATHEMATICS OF OPERATIONS RESEARCH, 2008, 33 (02) :446-460
[5]   Optimal multiple stopping and valuation of swing options [J].
Carmona, Rene ;
Touzi, Nizar .
MATHEMATICAL FINANCE, 2008, 18 (02) :239-268
[6]  
KARATZAS I, 1994, GRADUATE TEXTS MATH, V113
[7]  
Karatzas I., 1998, APPL MATH NEW YORK, V39
[8]  
KOBYLANSKI M, 2010, OPTIMAL MULTIPLE STO
[9]  
KOBYLANSKI M, 1998, THESIS U TOURS M KOB, P17
[10]   Optimal double stopping time problem [J].
Kobylanski, Magdalena ;
Quenez, Marie-Claire ;
Rouy-Mironescu, Elisabeth .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (1-2) :65-69