In this paper, for given operators A is an element of B (H) and B is an element of B (K), we characterize the set of all C is an element of B (K, H) such that the operator matrix M-C = [(A)(0) (C)(B)] is Fredholm consistent. We completely describe the sets boolean AND(C is an element of B(K, H)) sigma(FC) (MC) and boolean OR(C is an element of B(K, H)) sigma(FC) (MC). Also, we prove that boolean AND(C is an element of B(K, H)) sigma(FC) (MC) = sigma(FC) (M-0).
机构:
Shaanxi Normal Univ, Sch Math & Informat Sci, Xian, Shaanxi, Peoples R ChinaShaanxi Normal Univ, Sch Math & Informat Sci, Xian, Shaanxi, Peoples R China
Cui, Miaomiao
Cao, Xiaohong
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Normal Univ, Sch Math & Informat Sci, Xian, Shaanxi, Peoples R ChinaShaanxi Normal Univ, Sch Math & Informat Sci, Xian, Shaanxi, Peoples R China
机构:
Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710119, Peoples R ChinaShaanxi Normal Univ, Sch Math & Informat Sci, Xian 710119, Peoples R China
Dong, Jiong
Cao, Xiaohong
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710119, Peoples R ChinaShaanxi Normal Univ, Sch Math & Informat Sci, Xian 710119, Peoples R China