Fredholm consistency of upper-triangular operator matrices

被引:3
作者
Cvetkovic-Ilic, Dragana S. [1 ]
机构
[1] Univ Nis, Fac Sci & Math, Dept Math, Nish 18000, Serbia
关键词
Fredholm operator; Fredholm consistent operator; upper-triangular operator; INVERTIBLE COMPLETIONS; WEYLS THEOREM; BOUNDEDNESS; SPECTRUM;
D O I
10.4171/JST/184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, for given operators A is an element of B (H) and B is an element of B (K), we characterize the set of all C is an element of B (K, H) such that the operator matrix M-C = [(A)(0) (C)(B)] is Fredholm consistent. We completely describe the sets boolean AND(C is an element of B(K, H)) sigma(FC) (MC) and boolean OR(C is an element of B(K, H)) sigma(FC) (MC). Also, we prove that boolean AND(C is an element of B(K, H)) sigma(FC) (MC) = sigma(FC) (M-0).
引用
收藏
页码:1023 / 1038
页数:16
相关论文
共 50 条
  • [1] Fredholm complements of upper triangular operator matrices
    Qiu, Sinan
    Jiang, Lining
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (02)
  • [2] COMPLETIONS OF UPPER-TRIANGULAR MATRICES TO LEFT-FREDHOLM OPERATORS WITH NON-POSITIVE INDEX
    Cvetkovic-Ilic, Dragana S.
    JOURNAL OF OPERATOR THEORY, 2016, 76 (01) : 93 - 106
  • [3] Completions of upper-triangular matrices to Kato nonsingularity
    Pavlovic, V.
    Cvetkovic-Ilic, D. S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (02) : 1230 - 1242
  • [4] CLOSED RANGE AND FREDHOLM PROPERTIES OF UPPER- TRIANGULAR OPERATOR MATRICES
    Huang, Junjie
    Huang, Yonggang
    Wang, Hua
    ANNALS OF FUNCTIONAL ANALYSIS, 2015, 6 (03): : 42 - 52
  • [5] The Intersection of Upper and Lower Semi-Browder Spectrum of Upper-Triangular Operator Matrices
    Zhang, Shifang
    Zhong, Huaijie
    Long, Long
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [6] CFI upper triangular operator matrices
    Dong, Jiong
    Cao, Xiaohong
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (07) : 1217 - 1227
  • [7] Closedness of ranges of upper-triangular operators
    Dou, Yan-Ni
    Du, Gui-Chun
    Shao, Chun-Fang
    Du, Hong-Ke
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (01) : 13 - 20
  • [8] Property (R) for Upper Triangular Operator Matrices
    Yang, Li Li
    Cao, Xiao Hong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (03) : 523 - 532
  • [9] On the invertibility of upper triangular operator matrices
    Hai, Guojun
    Chen, Alatancang
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (04) : 538 - 547
  • [10] PROPERTY (w) OF UPPER TRIANGULAR OPERATOR MATRICES
    Rashid, Mohammad H. M.
    TAMKANG JOURNAL OF MATHEMATICS, 2020, 51 (02): : 81 - 99