Exfoliated Pt-clay/Nafion nanocomposite membrane for self-humidifying polymer electrolyte fuel cells

被引:70
作者
Zhang, Wenjing [1 ]
Li, Martin Ka Shing [1 ]
Yue, Po-Lock [1 ]
Gao, Ping [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Chem Engn, Kowloon, Hong Kong, Peoples R China
关键词
D O I
10.1021/la702153v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Monolayers of Pt nanoparticles of diameters of 2-3 nm with a high crystallinity were successfully anchored onto exfoliated nanoclay surfaces using a novel chemical vapor deposition process. Chemical bonding of Pt to the oxygen on the clay surface ensured the stability of the Pt nanoparticles, and hence, no leaching of Pt particles was observed after a prolonged ultrasonication and a rigorous mechanical agitation of Pt-clay in the Nafion solution during the membrane casting process. Systematic analysis using WAXD and TEM showed that the recasting process produced a new self-humidifying exfoliated Pt-clay/Nafion nanocomposite membrane with a high crystallinity and proton conductivity. In situ water production for humidification of the dry membranes without any external humidification was characterized by a combined water uptake and FTIR analysis of the as-prepared membrane after a single cell testing without using electrodes. The power density at 0.5 V of a single cell made of a Pt-clay/Nafion nanocomposite membrane was 723 mW/cm(2), which is 170% higher than that made of a commercial Nafion 112 membrane of similar thickness. No compromise in mechanical properties was observed.
引用
收藏
页码:2663 / 2670
页数:8
相关论文
共 52 条
[1]   Studies on ion-exchange membranes .1. Effect of humidity on the conductivity of Nafion(R) [J].
Anantaraman, AV ;
Gardner, CL .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1996, 414 (02) :115-120
[2]   Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC [J].
Antolini, E ;
Giorgi, L ;
Pozio, A ;
Passalacqua, E .
JOURNAL OF POWER SOURCES, 1999, 77 (02) :136-142
[3]   Nafion®/clay-SO3H membrane for proton exchange membrane fuel cell application [J].
Bebin, Philippe ;
Caravanier, Magaly ;
Galiano, Herve .
JOURNAL OF MEMBRANE SCIENCE, 2006, 278 (1-2) :35-42
[4]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[5]   WATER-BALANCE CALCULATIONS FOR SOLID-POLYMER-ELECTROLYTE FUEL-CELLS [J].
BERNARDI, DM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (11) :3344-3350
[6]   Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects [J].
Costamagna, P ;
Srinivasan, S .
JOURNAL OF POWER SOURCES, 2001, 102 (1-2) :242-252
[7]   Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part II. Engineering, technology development and application aspects [J].
Costamagna, P ;
Srinivasan, S .
JOURNAL OF POWER SOURCES, 2001, 102 (1-2) :253-269
[8]  
DHAR HP, 1994, Patent No. 5318863
[9]   Transport properties of ionomer composite membranes for direct methanol fuel cells [J].
Dimitrova, P ;
Friedrich, KA ;
Vogt, B ;
Stimming, U .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 532 (1-2) :75-83
[10]   SMALL-ANGLE X-RAY-SCATTERING STUDY OF PERFLUORINATED IONOMER MEMBRANES .1. ORIGIN OF 2 SCATTERING MAXIMA [J].
FUJIMURA, M ;
HASHIMOTO, T ;
KAWAI, H .
MACROMOLECULES, 1981, 14 (05) :1309-1315