Small gaps between primes

被引:158
作者
Maynard, James [1 ]
机构
[1] Univ Oxford Magdalen Coll, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.4007/annals.2015.181.1.7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a refinement of the GPY sieve method for studying prime k-tuples and small gaps between primes. This refinement avoids previous limitations of the method and allows us to show that for each k, the prime k-tuples conjecture holds for a positive proportion of admissible k-tuples. In particular, lim inf(n)(p(n)+(m) - p(n)) < infinity for every integer m. We also show that lim inf(p(n)+(l) - pn) <= 600 and, if we assume the Elliott-Halberstam conjecture, that lim inf(n) (p(n)+(1) - p(n)) <= 12 and lim inf(n) (p(n)+(2) - p(n)) <= 600.
引用
收藏
页码:383 / 413
页数:31
相关论文
共 9 条
[1]  
Elliott H., 1970, S MATH, V4, P59
[2]   LIMITATIONS TO THE EQUI-DISTRIBUTION OF PRIMES .1. [J].
FRIEDLANDER, J ;
GRANVILLE, A .
ANNALS OF MATHEMATICS, 1989, 129 (02) :363-382
[3]   Higher correlations of divisor sums related to primes III: Small caps between primes [J].
Goldston, D. A. ;
Yildirim, C. Y. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 95 :653-686
[4]   Small gaps between products of two primes [J].
Goldston, D. A. ;
Graham, S. W. ;
Pintz, J. ;
Yildirim, C. Y. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2009, 98 :741-774
[5]   Primes in tuples I [J].
Goldston, Daniel A. ;
Pintz, Janos ;
Yildirim, Cem Y. .
ANNALS OF MATHEMATICS, 2009, 170 (02) :819-862
[6]   PRIMES IN TUPLES III: On the difference p(n+v) - p(n) [J].
Goldston, Daniel A. ;
Pintz, Janos ;
Yildirim, Cem Yalcim .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2006, 35 (01) :79-90
[7]  
Polymath D. H. J., ARXIV14020811
[8]  
Selberg A., 1991, COLLECT PAPERS, VII
[9]   Bounded gaps between primes [J].
Zhang, Yitang .
ANNALS OF MATHEMATICS, 2014, 179 (03) :1121-1174