Theory of valley-dependent transport in graphene-based lateral quantum structures

被引:6
作者
Chen, Feng-Wu [1 ]
Chou, Mei-Yin [2 ,3 ,4 ]
Chen, Yiing-Rei [5 ]
Wu, Yu-Shu [1 ,6 ]
机构
[1] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan
[2] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan
[3] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[4] Georgia Inst Technol, Sch Phys, Atlanta, GA 30330 USA
[5] Natl Taiwan Normal Univ, Dept Phys, Taipei 11650, Taiwan
[6] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 30013, Taiwan
关键词
POLARIZATION; MOS2;
D O I
10.1103/PhysRevB.94.075407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Modulation of electronic states in two-dimensional materials can be achieved by using in-plane variations of the band gap or the average potential in lateral quantum structures. In the atomic configurations with hexagonal symmetry, this approach makes it possible to tailor the valleytronic properties for potential device applications. In this work, we present a multiband theory to calculate the valley-dependent electron transport in graphene-based lateral quantum structures. As an example, we consider the structures with a single interface that exhibits an energy gap or potential discontinuity. The theoretical formalism proceeds within the tight-binding description, by first deriving the local bulk complex band structures in the regions of a constant gap or potential and, next, joining the local wave functions across the interface via a cell-averaged current operator to ensure the current continuity. The theory is applied to the study of electron reflection off and transmission through an interface. Both reflection and transmission are found to exhibit valley-contrast behavior that can be used to generate valley-polarized electron sources. The results vary with the type of interfaces, as well as between monolayer and bilayer graphene-based structures. In the monolayer case, the valley contrast originates from the band warping and only becomes sizable for incident carriers of high energy, whereas in AB-stacked bilayer graphene, the vertical interlayer coupling emerges as an additional important cause for valley contrast, and the favorable carrier energy is also found to be drastically lower. Our numerical results clearly demonstrate the propitious valleytronic properties of bilayer graphene structures.
引用
收藏
页数:12
相关论文
共 20 条
[1]   Theory of the valley-valve effect in graphene nanoribbons [J].
Akhmerov, A. R. ;
Bardarson, J. H. ;
Rycerz, A. ;
Beenakker, C. W. J. .
PHYSICAL REVIEW B, 2008, 77 (20)
[2]   Current density and continuity in discretized models [J].
Boykin, Timothy B. ;
Luisier, Mathieu ;
Klimeck, Gerhard .
EUROPEAN JOURNAL OF PHYSICS, 2010, 31 (05) :1077-1087
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   Detecting topological currents in graphene superlattices [J].
Gorbachev, R. V. ;
Song, J. C. W. ;
Yu, G. L. ;
Kretinin, A. V. ;
Withers, F. ;
Cao, Y. ;
Mishchenko, A. ;
Grigorieva, I. V. ;
Novoselov, K. S. ;
Levitov, L. S. ;
Geim, A. K. .
SCIENCE, 2014, 346 (6208) :448-451
[5]   Topological valley transport at bilayer graphene domain walls [J].
Ju, Long ;
Shi, Zhiwen ;
Nair, Nityan ;
Lv, Yinchuan ;
Jin, Chenhao ;
Velasco, Jairo, Jr. ;
Ojeda-Aristizabal, Claudia ;
Bechtel, Hans A. ;
Martin, Michael C. ;
Zettl, Alex ;
Analytis, James ;
Wang, Feng .
NATURE, 2015, 520 (7549) :650-U356
[6]   Valley-based field-effect transistors in graphene [J].
Lee, M. -K. ;
Lue, N. -Y. ;
Wen, C. -K. ;
Wu, G. Y. .
PHYSICAL REVIEW B, 2012, 86 (16)
[7]   Atomically Thin MoS2: A New Direct-Gap Semiconductor [J].
Mak, Kin Fai ;
Lee, Changgu ;
Hone, James ;
Shan, Jie ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2010, 105 (13)
[8]  
Mak KF, 2012, NAT NANOTECHNOL, V7, P494, DOI [10.1038/nnano.2012.96, 10.1038/NNANO.2012.96]
[9]   Topological confinement in bilayer graphene [J].
Martin, Ivar ;
Blanter, Ya. M. ;
Morpurgo, A. F. .
PHYSICAL REVIEW LETTERS, 2008, 100 (03)
[10]   Landau-level degeneracy and quantum hall effect in a graphite bilayer [J].
McCann, E ;
Fal'ko, VI .
PHYSICAL REVIEW LETTERS, 2006, 96 (08) :1-4