Strange nonchaotic attractors in random dynamical systems

被引:33
作者
Wang, XG
Zhan, M
Lai, CH
Lai, YC
机构
[1] Natl Univ Singapore, Temasek Labs, Singapore 119260, Singapore
[2] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[3] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
[4] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
[5] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
关键词
D O I
10.1103/PhysRevLett.92.074102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Whether strange nonchaotic attractors (SNAs) can occur typically in dynamical systems other than quasiperiodically driven systems has long been an open question. Here we show, based on a physical analysis and numerical evidence, that robust SNAs can be induced by small noise in autonomous discrete-time maps and in periodically driven continuous-time systems. These attractors, which are relevant to physical and biological applications, can thus be expected to occur more commonly in dynamical systems than previously thought.
引用
收藏
页码:741021 / 741024
页数:4
相关论文
共 25 条
[1]   Strange nonchaotic attractors in autonomous and periodically driven systems [J].
Anishchenko, VS ;
Vadivasova, TE ;
Sosnovtseva, O .
PHYSICAL REVIEW E, 1996, 54 (04) :3231-3234
[2]   From high dimensional chaos to stable periodic orbits: The structure of parameter space [J].
Barreto, E ;
Hunt, BR ;
Grebogi, C ;
Yorke, JA .
PHYSICAL REVIEW LETTERS, 1997, 78 (24) :4561-4564
[3]   QUASIPERIODICALLY FORCED DAMPED PENDULA AND SCHRODINGER-EQUATIONS WITH QUASIPERIODIC POTENTIALS - IMPLICATIONS OF THEIR EQUIVALENCE [J].
BONDESON, A ;
OTT, E ;
ANTONSEN, TM .
PHYSICAL REVIEW LETTERS, 1985, 55 (20) :2103-2106
[4]   EVOLUTION OF ATTRACTORS IN QUASIPERIODICALLY FORCED SYSTEMS - FROM QUASIPERIODIC TO STRANGE NONCHAOTIC TO CHAOTIC [J].
DING, MZ ;
GREBOGI, C ;
OTT, E .
PHYSICAL REVIEW A, 1989, 39 (05) :2593-2598
[5]   PHASE-RESETTING MAP AND THE DYNAMICS OF QUASI-PERIODICALLY FORCED BIOLOGICAL OSCILLATORS [J].
DING, MZ ;
KELSO, JAS .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (03) :553-567
[6]   EXPERIMENTAL-OBSERVATION OF A STRANGE NONCHAOTIC ATTRACTOR [J].
DITTO, WL ;
SPANO, ML ;
SAVAGE, HT ;
RAUSEO, SN ;
HEAGY, J ;
OTT, E .
PHYSICAL REVIEW LETTERS, 1990, 65 (05) :533-536
[7]   STRANGE ATTRACTORS THAT ARE NOT CHAOTIC [J].
GREBOGI, C ;
OTT, E ;
PELIKAN, S ;
YORKE, JA .
PHYSICA D, 1984, 13 (1-2) :261-268
[8]   THE BIRTH OF STRANGE NONCHAOTIC ATTRACTORS [J].
HEAGY, JF ;
HAMMEL, SM .
PHYSICA D, 1994, 70 (1-2) :140-153
[9]   STRANGE SADDLES AND THE DIMENSIONS OF THEIR INVARIANT-MANIFOLDS [J].
HSU, GH ;
OTT, E ;
GREBOGI, C .
PHYSICS LETTERS A, 1988, 127 (04) :199-204
[10]   Fractal properties of robust strange nonchaotic attractors [J].
Hunt, BR ;
Ott, E .
PHYSICAL REVIEW LETTERS, 2001, 87 (25) :254101-254101