An Empirical Approach for Tunnel Support Design through Q and RMi Systems in Fractured Rock Mass

被引:11
作者
Lee, Jaekook [1 ]
Rehman, Hafeezur [1 ,2 ]
Naji, Abdul Muntaqim [1 ,3 ]
Kim, Jung-Joo [4 ]
Yoo, Han-Kyu [1 ]
机构
[1] Hanyang Univ, Dept Civil & Environm Engn, 55 Hanyangdaehak Ro, Ansan 426791, South Korea
[2] BUITEMS, Dept Min Engn, Fac Engn, Quetta 87300, Pakistan
[3] BUITEMS, Fac Engn, Dept Geol Engn, Quetta 87300, Pakistan
[4] Korea Railrd Res Inst, 176 Cheoldobangmulgwan Ro, Uiwang Si 16105, Gyeonggi Do, South Korea
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 12期
关键词
high in situ stresses; fractured rock mass; SRF; stress level; CLASSIFICATION SYSTEMS; GROUND BEHAVIOR; DEFORMATION; STABILITY;
D O I
10.3390/app8122659
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Empirical systems for the classification of rock mass are used primarily for preliminary support design in tunneling. When applying the existing acceptable international systems for tunnel preliminary supports in high-stress environments, the tunneling quality index (Q) and the rock mass index (RMi) systems that are preferred over geomechanical classification due to the stress characterization parameters that are incorporated into the two systems. However, these two systems are not appropriate when applied in a location where the rock is jointed and experiencing high stresses. This paper empirically extends the application of the two systems to tunnel support design in excavations in such locations. Here, the rock mass characterizations and installed support data of six tunnel projects are used. The back-calculation approach is used to determine the Q value using the Q-system support chart, and these values are then used to develop the equations and charts to characterize the stress reduction factor (SRF), which is also numerically evaluated. These equations and charts reveal that the SRF is a function of relative block size, strength-stress ratio, and intact rock compressive strength. Furthermore, the RMi-suggested supports were heavier than the actual installed ones. If the approximate inverse relation between stress level (SL) and SRF is used, the difference between the actual and the recommended supports increases when using the RMi-recommended rock support chart for blocky ground. An alternate system is made for support recommendation using a Q-system support chart. In this system, the ground condition factor is modified from the available parameters, and a correlation is developed with a modified Q system.
引用
收藏
页数:22
相关论文
共 55 条
[1]  
Ali W., 2014, International Journal of Scientific Engineering and Technology, V3, P1292
[2]  
[Anonymous], 2003, FELSBAU
[3]  
[Anonymous], 2011, THE J
[4]  
[Anonymous], Q SYSTEM POSSIBILITI
[5]  
[Anonymous], ROCK PAR JHEL PROJ
[6]  
[Anonymous], GEOTH INT REP
[7]  
[Anonymous], GEOL ENG GEOL TEND D
[8]  
[Anonymous], THESIS
[9]  
[Anonymous], 1996, MILESTONES ROCK ENG
[10]  
[Anonymous], 1993, P INT S SPRAYED CONC