Development of an online, publicly accessible naive Bayesian decision support tool for mammographic mass lesions based on the American College of Radiology (ACR) BI-RADS lexicon

被引:15
作者
Benndorf, Matthias [1 ]
Kotter, Elmar [1 ]
Langer, Mathias [1 ]
Herda, Christoph [2 ]
Wu, Yirong [3 ]
Burnside, Elizabeth S. [3 ]
机构
[1] Univ Hosp Freiburg, Dept Radiol, D-79106 Freiburg, Germany
[2] Kantonsspital Graubunden, CH-7000 Chur, Switzerland
[3] Univ Wisconsin, Madison Sch Med & Publ Hlth, Dept Radiol, Madison, WI 53792 USA
基金
美国国家卫生研究院;
关键词
Mammography; Bayesian analysis; Decision support techniques; BI-RADS; CAD; BREAST-CANCER RISK; DATA SYSTEM; DIAGNOSTIC-ACCURACY; PREDICTION MODELS; CLINICAL-DATA; VARIABILITY; DESCRIPTORS; NETWORKS;
D O I
10.1007/s00330-014-3570-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
To develop and validate a decision support tool for mammographic mass lesions based on a standardized descriptor terminology (BI-RADS lexicon) to reduce variability of practice. We used separate training data (1,276 lesions, 138 malignant) and validation data (1,177 lesions, 175 malignant). We created na < ve Bayes (NB) classifiers from the training data with tenfold cross-validation. Our "inclusive model" comprised BI-RADS categories, BI-RADS descriptors, and age as predictive variables; our "descriptor model" comprised BI-RADS descriptors and age. The resulting NB classifiers were applied to the validation data. We evaluated and compared classifier performance with ROC-analysis. In the training data, the inclusive model yields an AUC of 0.959; the descriptor model yields an AUC of 0.910 (P < 0.001). The inclusive model is superior to the clinical performance (BI-RADS categories alone, P < 0.001); the descriptor model performs similarly. When applied to the validation data, the inclusive model yields an AUC of 0.935; the descriptor model yields an AUC of 0.876 (P < 0.001). Again, the inclusive model is superior to the clinical performance (P < 0.001); the descriptor model performs similarly. We consider our classifier a step towards a more uniform interpretation of combinations of BI-RADS descriptors.
引用
收藏
页码:1768 / 1775
页数:8
相关论文
共 35 条
  • [11] Probabilistic Computer Model Developed from Clinical Data in National Mammography Database Format to Classify Mammographic Findings
    Burnside, Elizabeth S.
    Davis, Jesse
    Chhatwal, Jagpreet
    Alagoz, Oguzhan
    Lindstrom, Mary J.
    Geller, Berta M.
    Littenberg, Benjamin
    Shaffer, Katherine A.
    Kahn, Charles E., Jr.
    Page, C. David
    [J]. RADIOLOGY, 2009, 251 (03) : 663 - 672
  • [12] Coding mammograms using the classification "probably benign finding - Short interval follow-up suggested"
    Caplan, LS
    Blackman, D
    Nadel, M
    Monticciolo, DL
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 1999, 172 (02) : 339 - 342
  • [13] CHARNIAK E, 1991, AI MAG, V12, P50
  • [14] External validation of multivariable prediction models: a systematic review of methodological conduct and reporting
    Collins, Gary S.
    de Groot, Joris A.
    Dutton, Susan
    Omar, Omar
    Shanyinde, Milensu
    Tajar, Abdelouahid
    Voysey, Merryn
    Wharton, Rose
    Yu, Ly-Mee
    Moons, Karel G.
    Altman, Douglas G.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2014, 14
  • [15] COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH
    DELONG, ER
    DELONG, DM
    CLARKEPEARSON, DI
    [J]. BIOMETRICS, 1988, 44 (03) : 837 - 845
  • [16] Domingos P., 1996, Machine Learning. Proceedings of the Thirteenth International Conference (ICML '96), P105
  • [17] The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process
    Elter, M.
    Schulz-Wendtland, R.
    Wittenberg, T.
    [J]. MEDICAL PHYSICS, 2007, 34 (11) : 4164 - 4172
  • [18] CADx of mammographic masses and clustered microcalcifications: A review
    Elter, Matthias
    Horsch, Alexander
    [J]. MEDICAL PHYSICS, 2009, 36 (06) : 2052 - 2068
  • [19] Fischer EA, 2004, P ANN INT IEEE EMBS, V26, P3031
  • [20] Hand DJ, 2001, INT STAT REV, V69, P385, DOI 10.1111/j.1751-5823.2001.tb00465.x