Development of an online, publicly accessible naive Bayesian decision support tool for mammographic mass lesions based on the American College of Radiology (ACR) BI-RADS lexicon

被引:15
作者
Benndorf, Matthias [1 ]
Kotter, Elmar [1 ]
Langer, Mathias [1 ]
Herda, Christoph [2 ]
Wu, Yirong [3 ]
Burnside, Elizabeth S. [3 ]
机构
[1] Univ Hosp Freiburg, Dept Radiol, D-79106 Freiburg, Germany
[2] Kantonsspital Graubunden, CH-7000 Chur, Switzerland
[3] Univ Wisconsin, Madison Sch Med & Publ Hlth, Dept Radiol, Madison, WI 53792 USA
基金
美国国家卫生研究院;
关键词
Mammography; Bayesian analysis; Decision support techniques; BI-RADS; CAD; BREAST-CANCER RISK; DATA SYSTEM; DIAGNOSTIC-ACCURACY; PREDICTION MODELS; CLINICAL-DATA; VARIABILITY; DESCRIPTORS; NETWORKS;
D O I
10.1007/s00330-014-3570-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
To develop and validate a decision support tool for mammographic mass lesions based on a standardized descriptor terminology (BI-RADS lexicon) to reduce variability of practice. We used separate training data (1,276 lesions, 138 malignant) and validation data (1,177 lesions, 175 malignant). We created na < ve Bayes (NB) classifiers from the training data with tenfold cross-validation. Our "inclusive model" comprised BI-RADS categories, BI-RADS descriptors, and age as predictive variables; our "descriptor model" comprised BI-RADS descriptors and age. The resulting NB classifiers were applied to the validation data. We evaluated and compared classifier performance with ROC-analysis. In the training data, the inclusive model yields an AUC of 0.959; the descriptor model yields an AUC of 0.910 (P < 0.001). The inclusive model is superior to the clinical performance (BI-RADS categories alone, P < 0.001); the descriptor model performs similarly. When applied to the validation data, the inclusive model yields an AUC of 0.935; the descriptor model yields an AUC of 0.876 (P < 0.001). Again, the inclusive model is superior to the clinical performance (P < 0.001); the descriptor model performs similarly. We consider our classifier a step towards a more uniform interpretation of combinations of BI-RADS descriptors.
引用
收藏
页码:1768 / 1775
页数:8
相关论文
共 35 条
[11]   Probabilistic Computer Model Developed from Clinical Data in National Mammography Database Format to Classify Mammographic Findings [J].
Burnside, Elizabeth S. ;
Davis, Jesse ;
Chhatwal, Jagpreet ;
Alagoz, Oguzhan ;
Lindstrom, Mary J. ;
Geller, Berta M. ;
Littenberg, Benjamin ;
Shaffer, Katherine A. ;
Kahn, Charles E., Jr. ;
Page, C. David .
RADIOLOGY, 2009, 251 (03) :663-672
[12]   Coding mammograms using the classification "probably benign finding - Short interval follow-up suggested" [J].
Caplan, LS ;
Blackman, D ;
Nadel, M ;
Monticciolo, DL .
AMERICAN JOURNAL OF ROENTGENOLOGY, 1999, 172 (02) :339-342
[13]  
CHARNIAK E, 1991, AI MAG, V12, P50
[14]   External validation of multivariable prediction models: a systematic review of methodological conduct and reporting [J].
Collins, Gary S. ;
de Groot, Joris A. ;
Dutton, Susan ;
Omar, Omar ;
Shanyinde, Milensu ;
Tajar, Abdelouahid ;
Voysey, Merryn ;
Wharton, Rose ;
Yu, Ly-Mee ;
Moons, Karel G. ;
Altman, Douglas G. .
BMC MEDICAL RESEARCH METHODOLOGY, 2014, 14
[15]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[16]  
Domingos P., 1996, Machine Learning. Proceedings of the Thirteenth International Conference (ICML '96), P105
[17]   The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process [J].
Elter, M. ;
Schulz-Wendtland, R. ;
Wittenberg, T. .
MEDICAL PHYSICS, 2007, 34 (11) :4164-4172
[18]   CADx of mammographic masses and clustered microcalcifications: A review [J].
Elter, Matthias ;
Horsch, Alexander .
MEDICAL PHYSICS, 2009, 36 (06) :2052-2068
[19]  
Fischer EA, 2004, P ANN INT IEEE EMBS, V26, P3031
[20]  
Hand DJ, 2001, INT STAT REV, V69, P385, DOI 10.1111/j.1751-5823.2001.tb00465.x