Spatial Dynamics of a Leslie-Gower Type Predator-Prey Model with Interval Parameters

被引:0
|
作者
Wang, Caiyun [1 ,2 ,3 ]
Guo, Min [1 ,2 ]
Lan, Wangsen [3 ]
Xu, Xiaoxin [4 ]
机构
[1] North Univ China, Sch Comp Sci & Technol, Taiyuan 030051, Peoples R China
[2] North Univ China, Sch Econ & Management, Taiyuan 030051, Peoples R China
[3] Xinzhou Teachers Univ, Dept Math, Xinzhou 034000, Shanxi, Peoples R China
[4] North Univ China, Sch Sci, Taiyuan 030051, Peoples R China
关键词
DENSITY-DEPENDENT DISPERSAL; SPATIOTEMPORAL DYNAMICS; PATTERNS; SYSTEM; DIFFUSION; STABILITY;
D O I
10.1155/2022/2483688
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Due to various imprecisions in nature, imprecise parameters in biological modeling should be taken into account. This paper studies the spatial dynamics of an imprecise prey-predator model of the Leslie-Gower type by presenting imprecise parameters as interval parameters. First, conditions of Turing instability are obtained via bifurcation analysis and interval-valued functions. Then, the effects of interval parameters on pattern selection are discussed via multiple-scale analysis. We discover that when all the parameters of the model are interval parameters, the value of the controlled parameter increases, and the range of the pattern selection domain expands as the value of the interval variable increases, i.e., both the controlled parameter and boundary of the pattern selection domain are interval numbers. Finally, under the effects of the interval parameters of diffusion and the prey's conversion rate into biomass for the predator, the density of the prey decreases or increases, respectively, and the structure or the microstructure of the pattern of the model changes with the growing value of the interval variable. This paper provides a new perspective on the study of the spatial predator-prey model.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] On the dynamics of a Leslie-Gower predator-prey ternary model with intraguild
    Accarino, C.
    Capone, F.
    De Luca, R.
    Massa, G.
    RICERCHE DI MATEMATICA, 2023, 74 (2) : 1099 - 1117
  • [2] Effects of Delay and Diffusion on the Dynamics of a Leslie-Gower Type Predator-Prey Model
    Zhang, Jia-Fang
    Yan, Xiang-Ping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (04):
  • [3] Spatiotemporal dynamics of a Leslie-Gower predator-prey model incorporating a prey refuge
    Guan, Xiaona
    Wang, Weiming
    Cai, Yongli
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) : 2385 - 2395
  • [4] A modified Leslie-Gower predator-prey model with prey infection
    Zhou X.
    Cui J.
    Shi X.
    Song X.
    Journal of Applied Mathematics and Computing, 2010, 33 (1-2) : 471 - 487
  • [5] On a Leslie-Gower predator-prey model incorporating a prey refuge
    Chen, Fengde
    Chen, Liujuan
    Xie, Xiangdong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) : 2905 - 2908
  • [6] Dynamics of a discrete Leslie-Gower predator-prey model with feedback controls
    Xu, Changjin
    Li, Peiluan
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2018, 8 (03) : 217 - 227
  • [7] Dynamics of a Leslie-Gower predator-prey model with additive Allee effect
    Cai, YongLi
    Zhao, Caidi
    Wang, Weiming
    Wang, Jinfeng
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (07) : 2092 - 2106
  • [8] Effect of weak prey in Leslie-Gower predator-prey model
    Mohammadi, Hossein
    Mahzoon, Mojtaba
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 224 : 196 - 204
  • [9] Dynamics of a Stage-Structured Leslie-Gower Predator-Prey Model
    Huo, Hai-Feng
    Wang, Xiaohong
    Castillo-Chavez, Carlos
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [10] DYNAMICS OF A LESLIE-GOWER PREDATOR-PREY MODEL WITH ADVECTION AND FREE BOUNDARIES
    Zhang, Yingshu
    Li, Yutian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (01): : 319 - 350