Modification of 1D TiO2 nanowires with GaOxNy by atomic layer deposition for TiO2@GaOxNy core-shell nanowires with enhanced photoelectrochemical performance

被引:21
作者
Tao, Jia-Jia [1 ]
Ma, Hong-Ping [1 ]
Yuan, Kai-Ping [1 ]
Gu, Yang [1 ]
Lian, Jian-Wei [1 ]
Li, Xiao-Xi [1 ]
Huang, Wei [1 ]
Nolan, Michael [2 ]
Lu, Hong-Liang [1 ]
Zhang, David-Wei [1 ]
机构
[1] Fudan Univ, Sch Microelect, Shanghai Inst Intelligent Elect & Syst, State Key Lab ASIC & Syst, Shanghai 200433, Peoples R China
[2] Univ Coll Cork, Tyndall Natl Inst, Cork T12 R5CP, Ireland
基金
国家重点研发计划; 爱尔兰科学基金会; 中国博士后科学基金; 上海市自然科学基金; 中国国家自然科学基金;
关键词
GALLIUM NITRIDE; SOLID-SOLUTION; BAND-GAP; WATER; EFFICIENT; OXIDE; PHOTOANODE; FABRICATION; ARRAYS; FILM;
D O I
10.1039/c9nr10908k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a well-known semiconductor that can catalyse the oxygen evolution reaction, TiO2 has been extensively investigated for its solar photoelectrochemical water properties. Unmodified TiO2 shows some issues, particularly with respect to its photoelectrochemical performance. In this paper, we present a strategy for the controlled deposition of controlled amounts of GaOxNy cocatalysts on TiO2 1D nanowires (TiO2@GaOxNy core-shell) using atomic layer deposition. We show that this modification significantly enhances the photoelectrochemical performance compared to pure TiO2 NW photoanodes. For our most active TiO2@GaOxNy core-shell nanowires with a GaOxNy thickness of 20 nm, a photocurrent density up to 1.10 mA cm(-2) (at 1.23 V vs. RHE) under AM 1.5 G irradiation (100 mW cm(-2)) has been achieved, which is 14 times higher than that of unmodified TiO2 NWs. Furthermore, the band gap matching with TiO2 enhances the absorption of visible light over unmodified TiO2 and the facile oxygen vacancy formation after the deposition of GaOxNy also provides active sites for water activation. Density functional theory studies of model systems of GaOxNy-modified TiO2 confirm the band gap reduction, high reducibility and ability to activate water. The highly efficient and stable systems of TiO2@GaOxNy core-shell nanowires with ALD deposited GaOxNy demonstrate a good strategy for the fabrication of core-shell structures that enhance the photoelectrochemical performance of readily available photoanodes.
引用
收藏
页码:7159 / 7173
页数:15
相关论文
共 68 条
[1]   A novel photoelectrode from TiO2-WO3 nanoarrays grown on FTO for solar water splitting [J].
Ali, Heba ;
Ismail, Nahla ;
Hegazy, Aiat ;
Mekewi, Mohamed .
ELECTROCHIMICA ACTA, 2014, 150 :314-319
[2]   Effects of divalent metal ion (Mg2+, Zn2+ and Be2+) doping on photocatalytic activity of ruthenium oxide-loaded gallium nitride for water splitting [J].
Arai, Naoki ;
Saito, Nobuo ;
Nishiyama, Hiroshi ;
Domen, Kazunari ;
Kobayashi, Hisayoshi ;
Sato, Kazunori ;
Inoue, Yasunobu .
CATALYSIS TODAY, 2007, 129 (3-4) :407-413
[3]   Highly Stable Bulk GaN Photoanode Grown by Hydride Vapor-Phase Epitaxy for Photoelectrochemical Water Splitting [J].
Bae, Hyojung ;
Kim, Haseong ;
Ju, Jin-Woo ;
Jeon, Dae-Woo ;
Ryu, Sang-Wan ;
Moon, Youngboo ;
Ha, Jun-Seok .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (04) :II103-II107
[4]   3D-Branched ZnO/CdS Nanowire Arrays for Solar Water Splitting and the Service Safety Research [J].
Bai, Zhiming ;
Yan, Xiaoqin ;
Li, Yong ;
Kang, Zhuo ;
Cao, Shiyao ;
Zhang, Yue .
ADVANCED ENERGY MATERIALS, 2016, 6 (03)
[5]   Ga2O3 Films for Photoelectrochemical Hydrogen Generation [J].
Chang, Shoou-Jinn ;
Wu, Ya-Ling ;
Weng, Wen-Yin ;
Lin, Yo-Hong ;
Hsieh, Wei-Kang ;
Sheu, Jinn-Kong ;
Hsu, Cheng-Liang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (09) :H508-H511
[6]   In Situ XRD Studies of ZnO/GaN Mixtures at High Pressure and High Temperature: Synthesis of Zn-Rich (Ga1-xZnx)(N1-xOx) Photocatalysts [J].
Chen, Haiyan ;
Wang, Liping ;
Bai, Jianming ;
Hanson, Jonathan C. ;
Warren, John B. ;
Muckerman, James T. ;
Fujita, Etsuko ;
Rodriguez, Jose A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (04) :1809-1814
[7]   Low-Temperature One-Step Growth of AION Thin Films with Homogenous Nitrogen-Doping Profile by Plasma-Enhanced Atomic Layer Deposition [J].
Chen, Hong-Yan ;
Lu, Hong-Liang ;
Chen, Jin-Xin ;
Zhang, Feng ;
Ji, Xin-Ming ;
Liu, Wen Jun ;
Yang, Xiao-Feng ;
Zhang, David Wei .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (44) :38662-38669
[8]   Nanowire Photoelectrochemistry [J].
Deng, Jiao ;
Su, Yude ;
Liu, Dong ;
Yang, Peidong ;
Liu, Bin ;
Liu, Chong .
CHEMICAL REVIEWS, 2019, 119 (15) :9221-9259
[9]   Boosting Photocatalytic Performance of Inactive Rutile TiO2 Nanorods under Solar Light Irradiation: Synergistic Effect of Acid Treatment and Metal Oxide Co-catalysts [J].
Dhandole, Love Kumar ;
Mahadik, Mahadeo A. ;
Kim, Su-Gyeong ;
Chung, Hee-Suk ;
Seo, Young-Seok ;
Cho, Min ;
Ryu, Jung Ho ;
Jang, Jum Suk .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (28) :23602-23613
[10]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509