Philos-type oscillation criteria for impulsive fractional differential equations

被引:9
作者
Feng, Limei [1 ]
Sun, Yibing [1 ]
Han, Zhenlai [1 ]
机构
[1] Univ Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
关键词
Oscillation theory; Fractional differential equation; Impulsive;
D O I
10.1007/s12190-019-01288-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the oscillation of the impulsive Riemann-Liouville fractional differential equation {[r(t)D(tk+)(alpha)x(t)]' + q(t)f (d + integral(t)(tk+) (t - s)(-alpha) x(s)ds) = 0, t is an element of (t(k), t(k+1)], k = 0, 1, 2 ..., 1/d D(tk+)(alpha)x(t(k)(+)) - D(tk-1+)(alpha)x(t(k)(-))/d+integral(tk-)(tk-1+) (t(k)(-) - s)(-alpha) x(s)ds = -b(k), k = 1, 2, ... Philos-type oscillation criteria of the equation are obtained. We are interested in finding adequate impulsive controls to make the fractional system with Riemann-Liouville derivatives oscillate. An example of the change from non-oscillation to oscillation under the impulsive conditions is found.
引用
收藏
页码:361 / 376
页数:16
相关论文
共 20 条
[1]   A Philos-type theorem for third-order nonlinear retarded dynamic equations [J].
Agarwal, Ravi P. ;
Bohner, Martin ;
Li, Tongxing ;
Zhang, Chenghui .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 :527-531
[2]   New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic equations [J].
Agarwal, Ravi P. ;
Zhang, Chenghui ;
Li, Tongxing .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 :822-828
[3]  
[Anonymous], 2019, J DIFFERENTIAL EQUAT, DOI DOI 10.1109/IMBIOC.2019.8777785
[4]  
Benchohra M, 2019, ADV DIFFER EQU-NY, V2019, P1
[5]   Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments [J].
Bohner, Martin ;
Hassan, Taher S. ;
Li, Tongxing .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (02) :548-560
[6]   Kamenev-type criteria for nonlinear damped dynamic equations [J].
Bohner Martin ;
Li TongXing .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (07) :1445-1452
[7]   Oscillation of impulsive neutral delay differential equations [J].
Graef, JR ;
Shen, JH ;
Stavroulakis, IP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (01) :310-333
[8]   Controllability and observability of impulsive fractional linear time-invariant system [J].
Guo, Tian Liang .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) :3171-3182
[9]   Response spectra generation using a fractional differential model [J].
Hermosillo-Arteaga, Armando ;
Romo, Miguel P. ;
Magana-del-Toro, Roberto .
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2018, 115 :719-729
[10]   Synchronization and antisynchronization of N-coupled fractional-order complex chaotic systems with ring connection [J].
Jiang, Cuimei ;
Zhang, Fangfang ;
Li, Tongxing .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (07) :2625-2638