Philos-type oscillation criteria for impulsive fractional differential equations

被引:8
作者
Feng, Limei [1 ]
Sun, Yibing [1 ]
Han, Zhenlai [1 ]
机构
[1] Univ Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
关键词
Oscillation theory; Fractional differential equation; Impulsive;
D O I
10.1007/s12190-019-01288-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the oscillation of the impulsive Riemann-Liouville fractional differential equation {[r(t)D(tk+)(alpha)x(t)]' + q(t)f (d + integral(t)(tk+) (t - s)(-alpha) x(s)ds) = 0, t is an element of (t(k), t(k+1)], k = 0, 1, 2 ..., 1/d D(tk+)(alpha)x(t(k)(+)) - D(tk-1+)(alpha)x(t(k)(-))/d+integral(tk-)(tk-1+) (t(k)(-) - s)(-alpha) x(s)ds = -b(k), k = 1, 2, ... Philos-type oscillation criteria of the equation are obtained. We are interested in finding adequate impulsive controls to make the fractional system with Riemann-Liouville derivatives oscillate. An example of the change from non-oscillation to oscillation under the impulsive conditions is found.
引用
收藏
页码:361 / 376
页数:16
相关论文
共 20 条
  • [1] A Philos-type theorem for third-order nonlinear retarded dynamic equations
    Agarwal, Ravi P.
    Bohner, Martin
    Li, Tongxing
    Zhang, Chenghui
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 : 527 - 531
  • [2] New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic equations
    Agarwal, Ravi P.
    Zhang, Chenghui
    Li, Tongxing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 : 822 - 828
  • [3] [Anonymous], 2019, J DIFFERENTIAL EQUAT, DOI DOI 10.1109/IMBIOC.2019.8777785
  • [4] Benchohra M, 2019, ADV DIFFER EQU-NY, V2019, P1
  • [5] Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments
    Bohner, Martin
    Hassan, Taher S.
    Li, Tongxing
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (02): : 548 - 560
  • [6] Kamenev-type criteria for nonlinear damped dynamic equations
    Bohner Martin
    Li TongXing
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (07) : 1445 - 1452
  • [7] Oscillation of impulsive neutral delay differential equations
    Graef, JR
    Shen, JH
    Stavroulakis, IP
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (01) : 310 - 333
  • [8] Controllability and observability of impulsive fractional linear time-invariant system
    Guo, Tian Liang
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 3171 - 3182
  • [9] Response spectra generation using a fractional differential model
    Hermosillo-Arteaga, Armando
    Romo, Miguel P.
    Magana-del-Toro, Roberto
    [J]. SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2018, 115 : 719 - 729
  • [10] Synchronization and antisynchronization of N-coupled fractional-order complex chaotic systems with ring connection
    Jiang, Cuimei
    Zhang, Fangfang
    Li, Tongxing
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (07) : 2625 - 2638