The realization problem for finitely generated refinement monoids

被引:4
作者
Ara, Pere [1 ]
Bosa, Joan [1 ]
Pardo, Enrique [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Spain
[2] Univ Cadiz, Fac Ciencias, Dept Matemat, Campus Puerto Real, Cadiz 11510, Spain
来源
SELECTA MATHEMATICA-NEW SERIES | 2020年 / 26卷 / 03期
关键词
Von Neumann regular ring; Refinement monoid; Realization problem; Universal localization; LEAVITT PATH ALGEBRAS; REGULAR ALGEBRA; CANCELLATION; RINGS;
D O I
10.1007/s00029-020-00559-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that every finitely generated conical refinement monoid can be represented as the monoid V(R) of isomorphism classes of finitely generated projective modules over a von Neumann regular ring R. To this end, we use the representation of these monoids provided by adaptable separated graphs. Given an adaptable separated graph (E, C) and a field K, we build a von Neumann regular K-algebra QK (E, C) and show that there is a natural isomorphism between the separated graph monoid M(E, C) and the monoid V(Q(K) (E, C)).
引用
收藏
页数:63
相关论文
共 38 条
[1]  
Abrams G., 2017, LEAVITT PATH ALGEBRA
[2]   LEAVITT PATH ALGEBRAS OF FINITE GELFAND-KIRILLOV DIMENSION [J].
Alahmadi, Adel ;
Alsulami, Hamed ;
Jain, S. K. ;
Zelmanov, Efim .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (06)
[3]  
Anh P.N., 1987, TSUKUBA J MATH, V11, P1, DOI 10.21099/tkbjm/1496160500
[4]   Nonstable K-theory for graph algebras [J].
Ara, P. ;
Moreno, M. A. ;
Pardo, E. .
ALGEBRAS AND REPRESENTATION THEORY, 2007, 10 (02) :157-178
[5]   THE REALIZATION PROBLEM FOR SOME WILD MONOIDS AND THE ATIYAH PROBLEM [J].
Ara, P. ;
Goodearl, K. R. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (08) :5665-5710
[6]   Tame and wild refinement monoids [J].
Ara, P. ;
Goodearl, K. R. .
SEMIGROUP FORUM, 2015, 91 (01) :1-27
[7]   Separative cancellation for projective modules over exchange rings [J].
Ara, P ;
Goodearl, KR ;
O'Meara, KC ;
Pardo, E .
ISRAEL JOURNAL OF MATHEMATICS, 1998, 105 (1) :105-137
[8]   Finitely generated antisymmetric graph monoids [J].
Ara, Pere ;
Perera, Francesc ;
Wehrung, Friedrich .
JOURNAL OF ALGEBRA, 2008, 320 (05) :1963-1982
[9]   The regular algebra of a quiver [J].
Ara, Pere ;
Brustenga, Miquel .
JOURNAL OF ALGEBRA, 2007, 309 (01) :207-235
[10]   The Groupoids of Adaptable Separated Graphs and Their Type Semigroups [J].
Ara, Pere ;
Bosa, Joan ;
Pardo, Enrique ;
Sims, Aidan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (20) :15444-15496