Sufficient conditions for Hamilton-connected graphs in terms of (signless Laplacian) spectral radius

被引:4
作者
Zhou, Qiannan [1 ,2 ]
Wang, Ligong [1 ,3 ]
Lu, Yong [2 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
[2] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[3] Northwestern Polytech Univ, Xian Budapest Joint Res Ctr Combinator, Xian 710129, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamilton-connected; Sufficient condition; Spectral radius; Signless Laplacian; ANALOGS;
D O I
10.1016/j.laa.2020.02.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present some spectral sufficient conditions for a graph to be Hamilton-connected in terms of the spectral radius or signless Laplacian spectral radius of the graph. Our results improve some previous work. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:205 / 225
页数:21
相关论文
共 29 条
[1]  
[Anonymous], 2001, Algebraic Graph Theory
[2]   Spectral condition for Hamiltonicity of a graph [J].
Benediktovich, Vladimir I. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 494 :70-79
[3]  
Bondy A., 2008, GRAPH THEORY
[4]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[5]   Sufficient conditions for Hamiltonian graphs in terms of (signless Laplacian) spectral radius [J].
Chen, Xiaodan ;
Hou, Yaoping ;
Qian, Jianguo .
LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (05) :919-936
[6]   On a conjecture of V. Nikiforov [J].
Csikvari, Peter .
DISCRETE MATHEMATICS, 2009, 309 (13) :4522-4526
[7]   ON THREE CONJECTURES INVOLVING THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS [J].
Feng, Lihua ;
Yu, Guihai .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99) :35-38
[8]   Spectral radius and Hamiltonicity of graphs [J].
Fiedler, Miroslav ;
Nikiforov, Vladimir .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) :2170-2173
[9]   Spectral radius and Hamiltonian properties of graphs, II [J].
Ge, Jun ;
Ning, Bo .
LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (11) :2298-2315
[10]   A sharp upper bound of the spectral radius of graphs [J].
Hong, Y ;
Shu, JL ;
Fang, KF .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 81 (02) :177-183