Using mathematical morphology for unsupervised classification of functional data

被引:6
|
作者
Leon, T. [1 ]
Ayala, G. [1 ]
Gaston, M. [2 ]
Mallor, F. [2 ]
机构
[1] Univ Valencia, Dept Stat & Operat Res, Burjassot 46100, Spain
[2] Univ Publ Navarra, Dept Stat & Operat Res, Pamplona 31006, Spain
关键词
functional data; mathematical morphology; unsupervised classification; PATTERN SPECTRA; SHAPE; CURVES;
D O I
10.1080/00949651003596099
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is concerned with the unsupervised classification of functional data by using mathematical morphology. Different morphological operators are used to extract relevant structures of the functions (considered as sets through their subgraph representations). These operators can be considered as preprocessing tools whose outputs are also functional data. We explore some dissimilarity measures and clustering methods for the classification of the transformed data. Our approach is illustrated through a detailed analysis of two data sets. These techniques, which have mainly been used in image processing, provide a flexible and robust toolbox for improving the results in unsupervised functional data classification.
引用
收藏
页码:1001 / 1016
页数:16
相关论文
共 50 条
  • [1] Classification by mathematical morphology
    Pina, P
    Barata, T
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 3516 - 3518
  • [2] Unsupervised Sentiment Classification of Twitter Data using Emoticons
    Hiremath, Savitha
    Manjula, S. H.
    Venugopal, K. R.
    2021 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2021, : 444 - 448
  • [3] Unsupervised Classification of Major Depression Using Functional Connectivity MRI
    Zeng, Ling-Li
    Shen, Hui
    Liu, Li
    Hu, Dewen
    HUMAN BRAIN MAPPING, 2014, 35 (04) : 1630 - 1641
  • [4] Mathematical morphology on tensor data using the Loewner ordering
    Burgeth, B
    Welk, M
    Feddern, C
    Weickert, J
    VISUALIZATION AND PROCESSING OF TENSOR FIELDS, 2006, : 357 - +
  • [5] Processing color and complex data using mathematical morphology
    Wheeler, M
    Zmuda, MA
    PROCEEDINGS OF THE IEEE 2000 NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE: ENGINEERING TOMORROW, 2000, : 618 - 624
  • [6] Using M Tree Data Structure as Unsupervised Classification Method
    Mihaescu, Marian Cristian
    Burdescu, Dumitru Dan
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2012, 36 (02): : 153 - 160
  • [7] Mineral Identification Using Unsupervised Classification from Hyperspectral Data
    Gupta, Priyanka
    Venkatesan, M.
    EMERGING RESEARCH IN DATA ENGINEERING SYSTEMS AND COMPUTER COMMUNICATIONS, CCODE 2019, 2020, 1054 : 259 - 268
  • [8] UNSUPERVISED CLASSIFICATION OF POLSAR DATA USING LARGE SCALE SPECTRAL CLUSTERING
    Lin, Li-Qi
    Song, Hui
    Huang, Ping-Ping
    Yang, Wen
    Xu, Xin
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [9] Scale invariant texture classification with mathematical morphology
    Ballarin, VL
    Brun, M
    Moler, EG
    LATIN AMERICAN APPLIED RESEARCH, 2001, 31 (02) : 79 - 82
  • [10] Unsupervised bayesian clustering for functional data
    Juery, Damien
    Abraham, Christophe
    Fontez, Benedicte
    JOURNAL OF THE SFDS, 2014, 155 (02): : 185 - 201