BRILL-NOETHER THEOREMS AND GLOBALLY GENERATED VECTOR BUNDLES ON HIRZEBRUCH SURFACES

被引:19
作者
Coskun, Izzet [1 ]
Huizenga, Jack [2 ]
机构
[1] Univ Illinois, Dept Math Stat & CS, Chicago, IL 60607 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
14J60; 14J26; 14D20; 14F05;
D O I
10.1017/nmj.2018.17
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that the cohomology of a general stable bundle on a Hirzebruch surface is determined by the Euler characteristic provided that the first Chern class satisfies necessary intersection conditions. More generally, we compute the Betti numbers of a general stable bundle. We also show that a general stable bundle on a Hirzebruch surface has a special resolution generalizing the Gaeta resolution on the projective plane. As a consequence of these results, we classify Chern characters such that the general stable bundle is globally generated.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 17 条
[1]  
[Anonymous], LONDON MATH SOC LECT
[2]  
[Anonymous], 2004, Positivity in Algebraic Geometry
[3]  
Bertram A., ARXIV161004185
[4]   Degenerations of surface scrolls and the Gromov-Witten invariants of Grassmannians [J].
Coskun, I .
JOURNAL OF ALGEBRAIC GEOMETRY, 2006, 15 (02) :223-284
[5]  
Coskun I., 2015, P GOK GEOM TOP C 201, P114
[6]  
Coskun I., CONT MATH
[7]  
Eisenbud D., 2005, GEOMETRY SYZYGIES 2, V229
[8]   POSITIVE POLYNOMIALS FOR AMPLE VECTOR-BUNDLES [J].
FULTON, W ;
LAZARSFELD, R .
ANNALS OF MATHEMATICS, 1983, 118 (01) :35-60
[9]  
GAETA F, 1951, CR HEBD ACAD SCI, V233, P912
[10]   P-AMPLE BUNDLES AND THEIR CHERN CLASSES [J].
GIESEKER, D .
NAGOYA MATHEMATICAL JOURNAL, 1971, 43 (NSEP) :91-&