Unseen Artificial Intelligence-Deep Learning Paradigm for Segmentation of Low Atherosclerotic Plaque in Carotid Ultrasound: A Multicenter Cardiovascular Study

被引:45
作者
Jain, Pankaj K. [1 ]
Sharma, Neeraj [1 ]
Saba, Luca [2 ]
Paraskevas, Kosmas I. [3 ]
Kalra, Mandeep K. [4 ]
Johri, Amer [5 ]
Laird, John R. [6 ]
Nicolaides, Andrew N. [7 ]
Suri, Jasjit S. [8 ]
机构
[1] IIT BHU, Sch Biomed Engn, Varanasi 221005, Uttar Pradesh, India
[2] Azienda Osped Univ, Dept Radiol, I-10015 Cagliari, Italy
[3] Cent Clin Athens, Dept Vasc Surg, Athens 14122, Greece
[4] Massachusetts Gen Hosp, Dept Radiol, 55 Fruit St, Boston, MA 02114 USA
[5] Queens Univ, Div Cardiol, Kingston, ON K7L 3N6, Canada
[6] Adventist Hlth St Helena, Inst Heart & Vasc, Helena, CA 94574 USA
[7] Univ Nicosia, Vasc Screening & Diagnost Ctr, CY-1700 Nicosia, Cyprus
[8] AtheroPoint, Stroke Diagnost & Monitoring Div, Roseville, CA 95661 USA
关键词
Unseen AI; Seen AI; UNet deep learning; multi-ethnic studies; carotid atherosclerotic wall plaque; INTIMA-MEDIA THICKNESS; STROKE RISK STRATIFICATION; IMT MEASUREMENT; MULTIINSTITUTIONAL DATABASE; COMPUTED-TOMOGRAPHY; LUMEN DIAMETER; EDGE SNAPPER; ARTERY WALL; SCALE-SPACE; VALIDATION;
D O I
10.3390/diagnostics11122257
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: The early detection of carotid wall plaque is recommended in the prevention of cardiovascular disease (CVD) in moderate-risk patients. Previous techniques for B-mode carotid atherosclerotic wall plaque segmentation used artificial intelligence (AI) methods on monoethnic databases, where training and testing are from the "same" ethnic group ("Seen AI"). Therefore, the versatility of the system is questionable. This is the first study of its kind that uses the "Unseen AI" paradigm where training and testing are from "different" ethnic groups. We hypothesized that deep learning (DL) models should perform in 10% proximity between "Unseen AI" and "Seen AI". Methodology: Two cohorts from multi-ethnic groups (330 Japanese and 300 Hong Kong (HK)) were used for the validation of our hypothesis. We used a four-layered UNet architecture for the segmentation of the atherosclerotic wall with low plaque. "Unseen AI" (training: Japanese, testing: HK or vice versa) and "Seen AI" experiments (single ethnicity or mixed ethnicity) were performed. Evaluation was conducted by measuring the wall plaque area. Statistical tests were conducted for its stability and reliability. Results: When using the UNet DL architecture, the "Unseen AI" pair one (Training: 330 Japanese and Testing: 300 HK), the mean accuracy, dice-similarity, and correlation-coefficient were 98.55, 78.38, and 0.80 (p < 0.0001), respectively, while for "Unseen AI" pair two (Training: 300 HK and Testing: 330 Japanese), these were 98.67, 82.49, and 0.87 (p < 0.0001), respectively. Using "Seen AI", the same parameters were 99.01, 86.89 and 0.92 (p < 0.0001), respectively. Conclusion: We demonstrated that "Unseen AI" was in close proximity (<10%) to "Seen AI", validating our DL model for low atherosclerotic wall plaque segmentation. The online system runs < 1 s.
引用
收藏
页数:20
相关论文
共 75 条
[1]   Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images [J].
Acharya, J. Rajendra ;
Sree, S. Vinitha ;
Krishnan, M. Muthu Rama ;
Krishnananda, N. ;
Ranjan, Shetty ;
Umesh, Pai ;
Suri, Jasjit S. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 112 (03) :624-632
[2]   An Accurate and Generalized Approach to Plaque Characterization in 346 Carotid Ultrasound Scans [J].
Acharya, U. Rajendra ;
Faust, Oliver ;
Sree, S. Vinitha ;
Molinari, Filippo ;
Saba, Luca ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2012, 61 (04) :1045-1053
[3]   Wilson disease tissue classification and characterization using seven artificial intelligence models embedded with 3D optimization paradigm on a weak training brain magnetic resonance imaging datasets: a supercomputer application [J].
Agarwal, Mohit ;
Saba, Luca ;
Gupta, Suneet K. ;
Johri, Amer M. ;
Khanna, Narendra N. ;
Mavrogeni, Sophie ;
Laird, John R. ;
Pareek, Gyan ;
Miner, Martin ;
Sfikakis, Petros P. ;
Protogerou, Athanasios ;
Sharma, Aditya M. ;
Viswanathan, Vijay ;
Kitas, George D. ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2021, 59 (03) :511-533
[4]   Stroke Risk Stratification and its Validation using Ultrasonic Echolucent Carotid Wall Plaque Morphology: A Machine Learning Paradigm [J].
Araki, Tadashi ;
Jain, Pankaj K. ;
Suri, Harman S. ;
Londhe, Narendra D. ;
Ikeda, Nobutaka ;
El-Baz, Ayman ;
Shrivastava, Vimal K. ;
Saba, Luca ;
Nicolaides, Andrew ;
Shafique, Shoaib ;
Laird, John R. ;
Gupta, Ajay ;
Suri, Jasjit S. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 80 :77-96
[5]   Two Automated Techniques for Carotid Lumen Diameter Measurement: Regional versus Boundary Approaches [J].
Araki, Tadashi ;
Kumar, P. Krishna ;
Suri, Harman S. ;
Ikeda, Nobutaka ;
Gupta, Ajay ;
Saba, Luca ;
Rajan, Jeny ;
Lavra, Francesco ;
Sharma, Aditya M. ;
Shafique, Shoaib ;
Nicolaides, Andrew ;
Laird, John R. ;
Suri, Jasjit S. .
JOURNAL OF MEDICAL SYSTEMS, 2016, 40 (07)
[6]  
Ayman El-Baz J.S.S., 2022, IPEM IOP SERIES PHYS, V1
[7]   Five multiresolution-based calcium volume measurement techniques from coronary IVUS videos: A comparative approach [J].
Banchhor, Sumit K. ;
Araki, Tadashi ;
Londhe, Narendra D. ;
Ikeda, Nobutaka ;
Radeva, Petia ;
Elbaz, Ayman ;
Saba, Luca ;
Nicolaides, Andrew ;
Shafique, Shoaib ;
Laird, John R. ;
Suri, Jasjit S. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 134 :237-258
[8]   Two-stage artificial intelligence model for jointly measurement of atherosclerotic wall thickness and plaque burden in carotid ultrasound: A screening tool for cardiovascular/stroke risk assessment [J].
Biswas, Mainak ;
Saba, Luca ;
Chakrabartty, Shubhro ;
Khanna, Narender N. ;
Song, Hanjung ;
Suri, Harman S. ;
Sfikakis, Petros P. ;
Mavrogeni, Sophie ;
Viskovic, Klaudija ;
Laird, John R. ;
Cuadrado-Godia, Elisa ;
Nicolaides, Andrew ;
Sharma, Aditya ;
Viswanathan, Vijay ;
Protogerou, Athanasios ;
Kitas, George ;
Pareek, Gyan ;
Miner, Martin ;
Suri, Jasjit S. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 123
[9]   State-of-the-art review on deep learning in medical imaging [J].
Biswas, Mainak ;
Kuppili, Venkatanareshbabu ;
Saba, Luca ;
Edla, Damodar Reddy ;
Suri, Harman S. ;
Cuadrado-Godia, Elisa ;
Laird, John R. ;
Marinhoe, Rui Tato ;
Sanches, Joao M. ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2019, 24 :392-426
[10]   Deep learning fully convolution network for lumen characterization in diabetic patients using carotid ultrasound: a tool for stroke risk [J].
Biswas, Mainak ;
Kuppili, Venkatanareshbabu ;
Saba, Luca ;
Edla, Damodar Reddy ;
Suri, Harman S. ;
Sharma, Aditya ;
Cuadrado-Godia, Elisa ;
Laird, John R. ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2019, 57 (02) :543-564