An insight into diagnosis of depression using machine learning techniques: a systematic review

被引:35
|
作者
Bhadra, Sweta [1 ]
Kumar, Chandan Jyoti [1 ]
机构
[1] Cotton Univ, Dept CS & IT, Gauhati 781001, India
关键词
Depression; machine learning; neuroimaging; multimedia data; mental disorder; STATE FUNCTIONAL CONNECTIVITY; UNIPOLAR DEPRESSION; PATTERN-CLASSIFICATION; FEATURE-SELECTION; MAJOR DEPRESSION; DISORDER; BIPOLAR; PREDICTION; FMRI; IDENTIFICATION;
D O I
10.1080/03007995.2022.2038487
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background In this modern era, depression is one of the most prevalent mental disorders from which millions of individuals are affected today. The symptoms of depression are heterogeneous and often coincide with other disorders such as bipolar disorder, Parkinson's, schizophrenia, etc. It is a serious mental illness that may lead to other health problems if left untreated. Currently, identifying individuals with depression is totally based on the expertise of the clinician's experience. In order to assist clinicians in identifying the characteristics and classifying depressed people, different types of data modalities and machine learning techniques have been incorporated by researchers in this field. This study aims to find the answers to some important questions related to the trend of publications, data modality, machine learning models, dataset usage, pre-processing techniques and feature extraction and selection techniques that are prevalent and guide the direction of future research on depression diagnosis. Methods This systematic review was conducted using a broad range of articles from two major databases: IEEE Xplore and PubMed. Studies ranging from the years 2011 to April 2021 were retrieved from the databases resulting in a total of 590 articles (53 articles from the IEEE Xplore database and 537 articles from the PubMed database). Out of those, the articles which satisfied the defined inclusion criteria were investigated for further analysis. Results A total of 135 articles were identified and analysed for this review. High growth in the number of publications has been observed in recent years. Furthermore, significant diversity in the use of data modalities and machine learning classifiers has also been noted in this study. fMRI data with an SVM classifier was found to be the most popular choice among researchers. In most of the studies, data scarcity and small sample size, particularly for neuroimaging data are major concerns. The use of identical data pre-processing tools for similar data modalities can be seen. This study also provides statistical analysis of the current framework with respect to the modality, machine learning classifier, sample size and accuracy by applying one-way ANOVA and the Tukey - Kramer test. Conclusion The results indicate that an effective fusion of machine learning techniques with a potential data modality has a promising future for assisting clinicians in automatic depression diagnosis.
引用
收藏
页码:749 / 771
页数:23
相关论文
共 50 条
  • [31] Machine learning techniques for pulmonary nodule computer-aided diagnosis using CT images: A systematic review
    Jin, Haizhe
    Yu, Cheng
    Gong, Zibo
    Zheng, Renjie
    Zhao, Yinan
    Fu, Quanwei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [32] Machine Learning on Early Diagnosis of Depression
    Lee, Kwang-Sig
    Ham, Byung-Joo
    PSYCHIATRY INVESTIGATION, 2022, 19 (08) : 597 - 605
  • [33] Applicability of machine learning techniques in food intake assessment: A systematic review
    Oliveira Chaves, Larissa
    Gomes Domingos, Ana Luiza
    Louzada Fernandes, Daniel
    Ribeiro Cerqueira, Fabio
    Siqueira-Batista, Rodrigo
    Bressan, Josefina
    CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2023, 63 (07) : 902 - 919
  • [34] Machine learning for administrative health records: A systematic review of techniques and applications
    Caruana, Adrian
    Bandara, Madhushi
    Musial, Katarzyna
    Catchpoole, Daniel
    Kennedy, Paul J.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2023, 144
  • [35] Machine Learning Techniques for Breast Cancer Analysis: A Systematic Literature Review
    Alkhathlan, Lina
    Saudagar, Abdul Khader Jilani
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (06): : 83 - 90
  • [36] Review on Machine Learning Techniques for Medical Data Classification and Disease Diagnosis
    Swapna Saturi
    Regenerative Engineering and Translational Medicine, 2023, 9 : 141 - 164
  • [37] Bad Smell Detection Using Machine Learning Techniques: A Systematic Literature Review
    Ahmed Al-Shaaby
    Hamoud Aljamaan
    Mohammad Alshayeb
    Arabian Journal for Science and Engineering, 2020, 45 : 2341 - 2369
  • [38] Suicidal behaviour prediction models using machine learning techniques: A systematic review
    Nordin, Noratikah
    Zainol, Zurinahni
    Noor, Mohd Halim Mohd
    Chan, Lai Fong
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2022, 132
  • [39] Skin Lesion Classification and Detection Using Machine Learning Techniques: A Systematic Review
    Debelee, Taye Girma
    DIAGNOSTICS, 2023, 13 (19)
  • [40] Bad Smell Detection Using Machine Learning Techniques: A Systematic Literature Review
    Al-Shaaby, Ahmed
    Aljamaan, Hamoud
    Alshayeb, Mohammad
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2020, 45 (04) : 2341 - 2369