Trimesitylborane-embedded radical scavenging separator for lithium-ion batteries

被引:3
|
作者
Lee, Giseung [1 ]
Oh, Seong Ho [1 ]
Park, Bo Keun [2 ]
Kim, Youngkwon [3 ]
Kim, Ki Jae [2 ]
Manivannan, Shanmugam [4 ]
Kim, Kyuwon [4 ]
Yim, Taeeun [1 ]
机构
[1] Incheon Natl Univ, Dept Chem, Adv Batteries Lab, 119 Acad Ro,Yeonsu Gu, Incheon, South Korea
[2] Konkuk Univ, Dept Energy Engn, Neungdong Ro 120,Gwangjin Gu, Seoul, South Korea
[3] Korea Elect Technol Inst, Adv Batteries Res Ctr, 25 Saenari Ro,Bundang Gu, Seongnam Si, Gyeonggi Do, South Korea
[4] Incheon Natl Univ, Dept Chem, Electrochem Lab Sensors & Energy, 119 Acad Ro,Yeonsu Gu, Incheon, South Korea
关键词
Lithium-ion batteries; Separator; Radical scavenger; Trimesitylborane; Cycling performance; POLYETHYLENE SEPARATOR; FORMING ADDITIVES; PERFORMANCE; CHALLENGES; BORON; RICH;
D O I
10.1016/j.cap.2021.07.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Here, we propose a new strategy that employs a functional separator composed of radical scavenging agents for removal of radical species in the cell. In detail, a radical scavenger, trimesitylborane (TRMSB), is embedded on the surface of nano-sized tungsten oxide (WO3) by a simple one-step process and the resulting nanoparticles are coated onto conventional separators by a dip-coating process. Our screening test performed by chemical reaction of TRMSB with a radical indicator (2,2-diphenyl-1-picrylhydrazyl, DPPH) confirms that TRMSB effectively scavenges radical species via a chemical reaction, implying that the use of a WO3-TRMSB-functionalized separator would be effective for decreasing radical concentrations during electrochemical processes. In our electrochemical tests, the cell cycled with a WO3-TRMSB-functionalized separator exhibit showed both improved cycling retention compared to a cell cycled with a bare separator and improved physical and mechanical properties.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] Separator technologies for lithium-ion batteries
    Xiaosong Huang
    Journal of Solid State Electrochemistry, 2011, 15 : 649 - 662
  • [2] Separator technologies for lithium-ion batteries
    Huang, Xiaosong
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (04) : 649 - 662
  • [3] Multifunctional Lithium-Ion-Exchanged Zeolite-Coated Separator for Lithium-Ion Batteries
    Xu, Jiagang
    Xiao, Xingcheng
    Zeng, Sherman
    Cai, Mei
    Verbrugge, Mark W.
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (12): : 7237 - +
  • [4] Preparation and electrochemical performance of ZrO2 nanoparticle-embedded nonwoven composite separator for lithium-ion batteries
    Xiao, Wei
    Gong, Yaqun
    Wang, Hong
    Zhao, Lina
    Liu, Jianguo
    Yan, Chuanwei
    CERAMICS INTERNATIONAL, 2015, 41 (10) : 14223 - 14229
  • [5] Electrospun polyimide-composite separator for lithium-ion batteries
    Shayapat, Jaritphun
    Chung, Ok Hee
    Park, Jun Seo
    ELECTROCHIMICA ACTA, 2015, 170 : 110 - 121
  • [6] Polyphenylene Sulfide Separator for High Safety Lithium-Ion Batteries
    Liu, Junchen
    Qin, Jiaxiang
    Mo, Yudi
    Wang, Shuanjin
    Han, Dongmei
    Xiao, Min
    Meng, Yuezhong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (08) : A1644 - A1652
  • [7] A Composite Fiber Separator with Reversible Thermal Shutdown for Safety of Lithium-Ion Batteries
    Gao, Tingting
    Tian, Peng
    Yang, Yongyu
    Xu, Qianjin
    Pang, Hongchang
    Ye, Junwei
    Ning, Guiling
    ENERGY TECHNOLOGY, 2022, 10 (09)
  • [8] Novel sandwich structured chrysotile fiber separator for advanced lithium-ion batteries
    Cai, Nana
    Wang, Kun
    Li, Neng
    Huang, Suping
    Xiao, Qi
    APPLIED CLAY SCIENCE, 2019, 183
  • [9] A comprehensive review of separator membranes in lithium-ion batteries
    Lingappan, Niranjanmurthi
    Lee, Wonoh
    Passerini, Stefano
    Pecht, Michael
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 187
  • [10] Rice paper as a separator membrane in lithium-ion batteries
    Zhang, L. C.
    Sun, X.
    Hu, Z.
    Yuan, C. C.
    Chen, C. H.
    JOURNAL OF POWER SOURCES, 2012, 204 : 149 - 154