Reduced order optimal control synthesis of a class of nonlinear distributed parameter systems using single network adaptive critic design

被引:0
作者
Padhi, Radhakant [1 ]
Prabhat, Prashant [2 ]
Balakrishnan, S. N. [3 ]
机构
[1] Indian Inst Sci, Dept Aerosp Engn, Bangalore 560012, Karnataka, India
[2] Univ Texas Dallas, Dept Elect Engn, Dallas, TX 75230 USA
[3] Univ Missouri, Dept Mech & Aerosp Engn, Rolla, MO 65409 USA
来源
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL | 2008年 / 4卷 / 02期
关键词
adaptive critic; single network adaptive critic; SNAC; optimal control; distributed parameter system control; proper orthogonal decomposition; temperature control; NEURAL-NETWORKS; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A computational tool is presented in this paper for the optimal control synthesis of a class of nonlinear distributed parameter systems. This systematic methodology incorporates proper orthogonal decomposition based basis function design followed by Galerkin projection, which results in a low-dimensional lumped parameter model. The optimal control problem in the reduced lumped parameter framework is then solved following the philosophy of recently developed 'single network adaptive critic (SNAC)' neural networks. This time domain solution is then mapped back to the distributed domain, which essentially leads to a closed form solution for the control variable in a state feedback form. Finite-element based numerical simulation results are presented for a one-dimensional benchmark nonlinear heat conduction problem.
引用
收藏
页码:457 / 469
页数:13
相关论文
共 19 条
  • [1] Adaptive-critic-based neural networks for aircraft optimal control
    Balakrishnan, SN
    Biega, V
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1996, 19 (04) : 893 - 898
  • [2] BAMEIH B, 1997, P C DEC CONTR SAN DI, P01056
  • [3] Reduced-order model feedback control design: Numerical implementation in a thin shell model
    Banks, HT
    del Rosario, RCH
    Smith, RC
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (07) : 1312 - 1324
  • [4] Bryson Arthur Earl, 2018, Applied Optimal Control
  • [5] BURNS JA, 1994, IEEE DECIS CONTR P, P3967, DOI 10.1109/CDC.1994.411563
  • [6] Curtain RF., 1995, INTRO INFINITE DIMEN, DOI [10.1007/978-1-4612-4224-6, DOI 10.1007/978-1-4612-4224-6]
  • [7] Fekih A, 2007, INT J INNOV COMPUT I, V3, P1073
  • [8] HOLMES P, 1996, TURBULENCE COHERENT, P00087
  • [9] Lasiecka I, 1995, PROCEEDINGS OF THE 34TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P2792, DOI 10.1109/CDC.1995.478540
  • [10] Lewis FL., 1992, APPL OPTIMAL CONTROL