Computational approaches for zero forcing and related problems

被引:22
|
作者
Brimkov, Boris [1 ]
Fast, Caleb C. [1 ,2 ]
Hicks, Illya V. [1 ]
机构
[1] Rice Univ, Dept Computat & Appl Math, 6100 Main St MS-134, Houston, TX 77005 USA
[2] FedEx Express, Business Analyt & Operat Res, 3680 Hacks Cross Rd Bldg H 2nd Floor, Memphis, TN 38125 USA
基金
美国国家科学基金会;
关键词
Combinatorial optimization; Zero forcing; Integer programming; Set-covering; CONNECTED DOMINATION; POWER DOMINATION; MINIMUM RANK; NUMBER; SETS; GRAPH;
D O I
10.1016/j.ejor.2018.09.030
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose computational approaches for the zero forcing problem, the connected zero forcing problem, and the problem of forcing a graph within a specified number of timesteps. Our approaches are based on a combination of integer programming models and combinatorial algorithms, and include formulations for zero forcing as a dynamic process, and as a set-covering problem. We explore several solution strategies for these models, test them on various types of graphs, and show that they are competitive with the state-of-the-art algorithm for zero forcing. Our proposed algorithms for connected zero forcing and for controlling the number of zero forcing timesteps are the first general-purpose computational methods for these problems, and are superior to brute force computation. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:889 / 903
页数:15
相关论文
共 50 条
  • [31] Some bounds on the zero forcing number of a graph
    Gentner, Michael
    Rautenbach, Dieter
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 203 - 213
  • [32] Proof of a conjecture on the zero forcing number of a graph
    Lu, Leihao
    Wu, Baoyindureng
    Tang, Zixing
    DISCRETE APPLIED MATHEMATICS, 2016, 213 : 233 - 237
  • [33] ON THE ZERO FORCING NUMBER OF GENERALIZED SIERPINSKI GRAPHS
    Vatandoost, Ebrahim
    Ramezani, Fatemeh
    Alikhani, Saeid
    TRANSACTIONS ON COMBINATORICS, 2019, 8 (01) : 41 - 50
  • [34] Grundy Domination and Zero Forcing in Regular Graphs
    Bresar, Bostjan
    Brezovnik, Simon
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 3637 - 3661
  • [35] Grundy dominating sequences and zero forcing sets
    Bresar, Bogtjan
    Bujtas, Csilla
    Gologranc, Tanja
    Klavzar, Sandi
    Kosmrlj, Gasper
    Patkos, Balazs
    Tuza, Zsolt
    Vizer, Mate
    DISCRETE OPTIMIZATION, 2017, 26 : 66 - 77
  • [36] Zero forcing propagation time on oriented graphs
    Berliner, Adam
    Bozeman, Chassidy
    Butler, Steve
    Catral, Minerva
    Hogben, Leslie
    Kroschel, Brenda
    Lin, Jephian C. -H.
    Warnberg, Nathan
    Young, Michael
    DISCRETE APPLIED MATHEMATICS, 2017, 224 : 45 - 59
  • [37] Zero forcing sets and the minimum rank of graphs
    Barioli, Francesco
    Barrett, Wayne
    Butler, Steve
    Cioaba, Sebastian M.
    Cvetkovic, Dragos
    Fallat, Shaun M.
    Godsil, Chris
    Haemers, Willem
    Hogben, Leslie
    Mikkelson, Rana
    Narayan, Sivaram
    Pryporova, Olga
    Sciriha, Irene
    So, Wasin
    Stevanovic, Dragan
    van der Holst, Hein
    Vander Meulen, Kevin N.
    Wehe, Amy Wangsness
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1628 - 1648
  • [38] Grundy domination and zero forcing in Kneser graphs
    Bresar, Bostjan
    Kos, Tim
    Daniel Tones, Pablo
    ARS MATHEMATICA CONTEMPORANEA, 2019, 17 (02) : 419 - 430
  • [39] Extremal values and bounds for the zero forcing number
    Gentner, Michael
    Penso, Lucia D.
    Rautenbach, Dieter
    Souza, Ueverton S.
    DISCRETE APPLIED MATHEMATICS, 2016, 214 : 196 - 200
  • [40] Strong structural controllability of networks: Comparison of bounds using distances and zero forcing
    Yazicioglu, Yasin
    Shabbir, Mudassir
    Abbas, Waseem
    Koutsoukos, Xenofon
    AUTOMATICA, 2022, 146