Computational approaches for zero forcing and related problems

被引:22
作者
Brimkov, Boris [1 ]
Fast, Caleb C. [1 ,2 ]
Hicks, Illya V. [1 ]
机构
[1] Rice Univ, Dept Computat & Appl Math, 6100 Main St MS-134, Houston, TX 77005 USA
[2] FedEx Express, Business Analyt & Operat Res, 3680 Hacks Cross Rd Bldg H 2nd Floor, Memphis, TN 38125 USA
基金
美国国家科学基金会;
关键词
Combinatorial optimization; Zero forcing; Integer programming; Set-covering; CONNECTED DOMINATION; POWER DOMINATION; MINIMUM RANK; NUMBER; SETS; GRAPH;
D O I
10.1016/j.ejor.2018.09.030
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose computational approaches for the zero forcing problem, the connected zero forcing problem, and the problem of forcing a graph within a specified number of timesteps. Our approaches are based on a combination of integer programming models and combinatorial algorithms, and include formulations for zero forcing as a dynamic process, and as a set-covering problem. We explore several solution strategies for these models, test them on various types of graphs, and show that they are competitive with the state-of-the-art algorithm for zero forcing. Our proposed algorithms for connected zero forcing and for controlling the number of zero forcing timesteps are the first general-purpose computational methods for these problems, and are superior to brute force computation. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:889 / 903
页数:15
相关论文
共 59 条
[31]   Bounds on the connected domination number of a graph [J].
Desormeaux, Wyatt J. ;
Haynes, Teresa W. ;
Henning, Michael A. .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (18) :2925-2931
[32]   Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph [J].
Edholm, Christina J. ;
Hogben, Leslie ;
My Huynh ;
LaGrange, Joshua ;
Row, Darren D. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) :4352-4372
[33]   Positive semidefinite zero forcing [J].
Ekstrand, Jason ;
Erickson, Craig ;
Hall, H. Tracy ;
Hay, Diana ;
Hogben, Leslie ;
Johnson, Ryan ;
Kingsley, Nicole ;
Osborne, Steven ;
Peters, Travis ;
Roat, Jolie ;
Ross, Arianne ;
Row, Darren D. ;
Warnberg, Nathan ;
Young, Michael .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (07) :1862-1874
[34]  
Eroh L, 2012, ARXIV12076127
[35]   Effects of vertex degrees on the zero-forcing number and propagation time of a graph [J].
Fast, Caleb C. ;
Hicks, Illya V. .
DISCRETE APPLIED MATHEMATICS, 2018, 250 :215-226
[36]   Optimizing over the first Chvatal closure [J].
Fischetti, Matteo ;
Lodi, Andrea .
MATHEMATICAL PROGRAMMING, 2007, 110 (01) :3-20
[37]   Thinning out Steiner trees: a node-based model for uniform edge costs [J].
Fischetti M. ;
Leitner M. ;
Ljubić I. ;
Luipersbeck M. ;
Monaci M. ;
Resch M. ;
Salvagnin D. ;
Sinnl M. .
Mathematical Programming Computation, 2017, 9 (02) :203-229
[38]   Solving connected dominating set faster than 2n [J].
Fomin, Fedor V. ;
Grandoni, Fabrizio ;
Kratsch, Dieter .
ALGORITHMICA, 2008, 52 (02) :153-166
[39]  
Goldberg F, 2014, LINEAR ALGEBRA APPL, V447, P56, DOI 10.1016/j.laa.2013.11.049
[40]   Domination in graphs applied to electric power networks [J].
Haynes, TW ;
Hedetniemi, SM ;
Hedetniemi, ST ;
Henning, MA .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2002, 15 (04) :519-529