Computational approaches for zero forcing and related problems

被引:22
作者
Brimkov, Boris [1 ]
Fast, Caleb C. [1 ,2 ]
Hicks, Illya V. [1 ]
机构
[1] Rice Univ, Dept Computat & Appl Math, 6100 Main St MS-134, Houston, TX 77005 USA
[2] FedEx Express, Business Analyt & Operat Res, 3680 Hacks Cross Rd Bldg H 2nd Floor, Memphis, TN 38125 USA
基金
美国国家科学基金会;
关键词
Combinatorial optimization; Zero forcing; Integer programming; Set-covering; CONNECTED DOMINATION; POWER DOMINATION; MINIMUM RANK; NUMBER; SETS; GRAPH;
D O I
10.1016/j.ejor.2018.09.030
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose computational approaches for the zero forcing problem, the connected zero forcing problem, and the problem of forcing a graph within a specified number of timesteps. Our approaches are based on a combination of integer programming models and combinatorial algorithms, and include formulations for zero forcing as a dynamic process, and as a set-covering problem. We explore several solution strategies for these models, test them on various types of graphs, and show that they are competitive with the state-of-the-art algorithm for zero forcing. Our proposed algorithms for connected zero forcing and for controlling the number of zero forcing timesteps are the first general-purpose computational methods for these problems, and are superior to brute force computation. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:889 / 903
页数:15
相关论文
共 59 条
[1]  
Aazami A., 2008, THESIS
[2]   Domination in graphs with bounded propagation: algorithms, formulations and hardness results [J].
Aazami, Ashkan .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2010, 19 (04) :429-456
[3]   Combinatorial model and bounds for target set selection [J].
Ackerman, Eyal ;
Ben-Zwi, Oren ;
Wolfovitz, Guy .
THEORETICAL COMPUTER SCIENCE, 2010, 411 (44-46) :4017-4022
[4]   Upper bounds on the k-forcing number of a graph [J].
Amos, David ;
Caro, Yair ;
Davila, Randy ;
Pepper, Ryan .
DISCRETE APPLIED MATHEMATICS, 2015, 181 :1-10
[5]  
[Anonymous], INTEGER COMBINATORIA
[6]   Computational experience with general cutting planes for the Set Covering problem [J].
Avella, Pasquale ;
Boccia, Maurizio ;
Vasilyev, Igor .
OPERATIONS RESEARCH LETTERS, 2009, 37 (01) :16-20
[7]   Reverse search for enumeration [J].
Avis, D ;
Fukuda, K .
DISCRETE APPLIED MATHEMATICS, 1996, 65 (1-3) :21-46
[8]  
Bader David A., 2014, ENCY SOCIAL NETWORK, P73, DOI [DOI 10.1007/978-1-4614-6170-823, 10.1007/978-1-4614-6170-8, 10.1007/978-1-4614-6170-8_23, DOI 10.1007/978-1-4614-6170-8_23]
[9]   ON THE SET COVERING POLYTOPE .1. ALL THE FACETS WITH COEFFICIENTS IN (0, 1, 2) [J].
BALAS, E ;
NG, SM .
MATHEMATICAL PROGRAMMING, 1989, 43 (01) :57-69
[10]   Zero forcing sets and the minimum rank of graphs [J].
Barioli, Francesco ;
Barrett, Wayne ;
Butler, Steve ;
Cioaba, Sebastian M. ;
Cvetkovic, Dragos ;
Fallat, Shaun M. ;
Godsil, Chris ;
Haemers, Willem ;
Hogben, Leslie ;
Mikkelson, Rana ;
Narayan, Sivaram ;
Pryporova, Olga ;
Sciriha, Irene ;
So, Wasin ;
Stevanovic, Dragan ;
van der Holst, Hein ;
Vander Meulen, Kevin N. ;
Wehe, Amy Wangsness .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1628-1648