Electrocardiogram analysis using a combination of statistical, geometric, and nonlinear heart rate variability features

被引:88
作者
Jovic, Alan [1 ]
Bogunovic, Nikola [1 ]
机构
[1] Fac Elect Engn & Comp, Dept Elect Microelect Comp & Intelligent Syst, HR-10000 Zagreb, Croatia
关键词
Random forest; Support vector machines; C4.5 decision tree; Heart disorder classification; Nonlinear analysis; Heart rate variability; TIME-SERIES ANALYSIS; NEURAL-NETWORKS; CLASSIFICATION; REGULARITY; COMPLEXITY;
D O I
10.1016/j.artmed.2010.09.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Objective: The paper addresses a common and recurring problem of electrocardiogram (ECG) classification based on heart rate variability (HRV) analysis. Current understanding of the limits of HRV analysis in diagnosing different cardiac conditions is not complete. Existing research suggests that a combination of carefully selected linear and nonlinear HRV features should significantly improve the accuracy for both binary and multiclass classification problems. The primary goal of this work is to evaluate a proposed combination of HRV features. Other explored objectives are the comparison of different machine learning algorithms in the HRV analysis and the inspection of the most suitable period T between two consecutively analyzed R-R intervals for nonlinear features. Methods and material: We extracted 11 features from 5 min of R-R interval recordings: SDNN, RMSSD, pNN20, HRV triangular index (HTI), spatial filling index (SFI), correlation dimension, central tendency measure (CTM), and four approximate entropy features (ApEn1-ApEn4). Analyzed heart conditions included normal heart rhythm, arrhythmia (any), supraventricular arrhythmia, and congestive heart failure. One hundred patient records from six online databases were analyzed, 25 for each condition. Feature vectors were extracted by a platform designed for this purpose, named ECG Chaos Extractor. The vectors were then analyzed by seven clustering and classification algorithms in the Weka system: K-means, expectation maximization (EM), C4.5 decision tree, Bayesian network, artificial neural network (ANN), support vector machines (SVM) and random forest (RF). Four-class and two-class (normal vs. abnormal) classification was performed. Relevance of particular features was evaluated using 1-Rule and C4.5 decision tree in the cases of individual features classification and classification with features' pairs. Results: Average total classification accuracy obtained for top three classification methods in the two classes' case was: RF 99.7%, ANN 99.1%, SVM 98.9%. In the four classes' case the best results were: RF 99.6%, Bayesian network 99.4%, SVM 98.4%. The best overall method was RF. C4.5 decision tree was successful in the construction of useful classification rules for the two classes' case. EM and K-means showed comparable clustering results: around 50% for the four classes' case and around 75% for the two classes' case. HTI, pNN20, RMSSD, ApEn3, ApEn4 and SFI were shown to be the most relevant features. HTI in particular appears in most of the top-ranked pairs of features and is the best analyzed feature. The choice of the period T for nonlinear features was shown to be arbitrary. However, a combination of five different periods significantly improved classification accuracy, from 70% for a single period up to 99% for five periods. Conclusions: Analysis shows that the proposed combination of 11 linear and nonlinear HRV features gives high classification accuracy when nonlinear features are extracted for five periods. The features' combination was thoroughly analyzed using several machine learning algorithms. In particular, RF algorithm proved to be highly efficient and accurate in both binary and multiclass classification of HRV records. Interpretable and useful rules were obtained with C4.5 decision tree. Further work in this area should elucidate which features should be extracted for the best classification results for specific types of cardiac disorders. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:175 / 186
页数:12
相关论文
共 49 条
  • [1] Acharya R.U., 2002, Rev. Eur. Technol. Biomed, V23, P333, DOI DOI 10.1016/S1297-9562(02)90002-1
  • [2] Classification of cardiac abnormalities using heart rate signals
    Acharya, RA
    Kumar, A
    Bhat, PS
    Lim, CM
    Iyengar, SS
    Kannathal, N
    Krishnan, SM
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2004, 42 (03) : 288 - 293
  • [3] Heart rate variability: a review
    Acharya, U. Rajendra
    Joseph, K. Paul
    Kannathal, N.
    Lim, Choo Min
    Suri, Jasjit S.
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2006, 44 (12) : 1031 - 1051
  • [4] Classification of heart rate data using artificial neural network and fuzzy equivalence relation
    Acharya, UR
    Bhat, PS
    Iyengar, SS
    Rao, A
    Dua, S
    [J]. PATTERN RECOGNITION, 2003, 36 (01) : 61 - 68
  • [5] Improving diagnostic ability of blood oxygen saturation from overnight pulse oximetry in obstructive sleep apnea detection by means of central tendency measure
    Alvarez, Daniel
    Hornero, Roberto
    Garcia, Maria
    del Campo, Felix
    Zamarron, Carlos
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2007, 41 (01) : 13 - 24
  • [6] Multiscale analysis of short term heart beat interval, arterial blood pressure, and instantaneous lung volume time series
    Angelini, Leonardo
    Maestri, Roberto
    Marinazzo, Daniele
    Nitti, Luigi
    Pellicoro, Mario
    Pinna, Gian Domenico
    Stramaglia, Sebastiano
    Tupputi, Salvatore A.
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2007, 41 (03) : 237 - 250
  • [7] [Anonymous], 1991, Multivariate statistical analysis: A conceptual introduction
  • [8] [Anonymous], 1984, Deterministic chaos: An introduction
  • [9] Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal
    Asl, Babak Mohammadzadeh
    Setarehdan, Seyed Kamaledin
    Mohebbi, Maryam
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2008, 44 (01) : 51 - 64
  • [10] Radial basis function neural networks for the characterization of heart rate variability dynamics
    Bezerianos, A
    Papadimitriou, S
    Alexopoulos, D
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 1999, 15 (03) : 215 - 234