Semigroup presentations for test local groups

被引:1
|
作者
Costa, J. C. [1 ]
Nogueira, C. [2 ]
Teixeira, M. L. [1 ]
机构
[1] Univ Minho, Dept Matemat & Aplicacoes, CMAT, P-4700320 Braga, Portugal
[2] Inst Politecn Leiria, Escola Super Tecnol & Gestao, CMAT, P-2411901 Alto Vieiro, Leiria, Portugal
关键词
Local group; Semigroup presentation; Rees matrix semigroup; Pseudovariety; kappa-term; Canonical form; PSEUDOVARIETY LS1; FORMS;
D O I
10.1007/s00233-014-9656-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we exhibit a type of semigroup presentation which determines a class of local groups. We show that the finite elements of this class generate the pseudovariety of all finite local groups and use them as test-semigroups to prove that and , the pseudovariety of all finite semigroups, verify the same -identities involving -terms of rank at most 1, where denotes the implicit signature consisting of the multiplication and the -power.
引用
收藏
页码:731 / 752
页数:22
相关论文
共 37 条
  • [1] Semigroup presentations for test local groups
    J. C. Costa
    C. Nogueira
    M. L. Teixeira
    Semigroup Forum, 2015, 90 : 731 - 752
  • [2] SEMIGROUP PRESENTATIONS FOR CONGRUENCES ON GROUPS
    Ayik, Gonca
    Caliskan, Basri
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (02) : 445 - 449
  • [3] Components in Graphs of Diagram Groups over the Union of Two Semigroup Presentations of Integers
    Gheisari, Yousof
    Bin Ahmad, Abd Ghafur
    SAINS MALAYSIANA, 2012, 41 (01): : 129 - 131
  • [4] On semigroup presentations that define a group
    G. Ayık
    B. Özer
    Semigroup Forum, 2015, 90 : 149 - 154
  • [5] On semigroup presentations that define a group
    Ayik, G.
    Ozer, B.
    SEMIGROUP FORUM, 2015, 90 (01) : 149 - 154
  • [6] Diagram Groups over Union of Two Semigroup Presentations of Natural Numbers by Adding Relations
    Gheisari, Yousof
    Bin Ahmad, Abd Ghafur
    MATEMATIKA, 2010, 26 (02) : 153 - 156
  • [7] The word problem for κ-terms over the pseudovariety of local groups
    Costa, J. C.
    Nogueira, C.
    Teixeira, M. L.
    SEMIGROUP FORUM, 2021, 103 (02) : 439 - 468
  • [8] Grading of a Semigroup C*-Algebra by a Local Group
    S. A. Grigoryan
    A. Sh. Sharafutdinov
    Russian Mathematics, 2023, 67 : 72 - 76
  • [9] Grading of a Semigroup C*-Algebra by a Local Group
    Grigoryan, S. A.
    Sharafutdinov, A. Sh.
    RUSSIAN MATHEMATICS, 2023, 67 (07) : 72 - 76
  • [10] Compact groups: Local groups?
    Tovmassian, HR
    Chavushyan, VH
    ASTRONOMICAL JOURNAL, 2000, 119 (04) : 1687 - 1690