共 11 条
The adaptivity of thresholding wavelet estimators in heteroscedastic nonparametric model with negatively super-additive dependent errors
被引:0
|作者:
Yu, Yuncai
[1
,2
]
Liu, Xinsheng
[1
,2
]
Liu, Ling
[3
]
Sief, Mohamed
[1
,2
,4
]
机构:
[1] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Inst Nano Sci, Nanjing 210016, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
[3] Donghua Univ, Dept Informat Sci & Technol, Shanghai 201600, Peoples R China
[4] Fayoum Univ, Fac Sci, Dept Math, Al Fayyum 63514, Egypt
关键词:
Adaptivity;
Heteroscedastic nonparametric model;
NSD errors;
Block thresholding;
Optimal convergence rate;
COMPLETE CONVERGENCE;
MINIMAX OPTIMALITY;
REGRESSION-MODEL;
RANDOM-VARIABLES;
WEIGHTED SUMS;
RANDOM DESIGN;
D O I:
10.1007/s42952-020-00049-6
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this paper, we consider two estimators, a hard thresholding wavelet estimator and a block thresholding wavelet estimator, for the regression function in heteroscedastic nonparametric model with negatively super-additive dependent (NSD) errors. The random design distribution is known or unknown, and the corresponding adaptive properties of these estimators are investigated over Besov spaces, for the L2 risk. The results indicate that the block thresholding estimator is theoretically and computationally superior to the hard thresholding estimator with the former attains the optimal convergence rates, while the later achieves the nearly optimal convergence rates. Thus the block thresholding estimator provides extensive adaptivity to many irregular function classes even though with the presence of heteroscedastic NSD errors.
引用
收藏
页码:1173 / 1194
页数:22
相关论文