The adaptivity of thresholding wavelet estimators in heteroscedastic nonparametric model with negatively super-additive dependent errors

被引:0
|
作者
Yu, Yuncai [1 ,2 ]
Liu, Xinsheng [1 ,2 ]
Liu, Ling [3 ]
Sief, Mohamed [1 ,2 ,4 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Inst Nano Sci, Nanjing 210016, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
[3] Donghua Univ, Dept Informat Sci & Technol, Shanghai 201600, Peoples R China
[4] Fayoum Univ, Fac Sci, Dept Math, Al Fayyum 63514, Egypt
关键词
Adaptivity; Heteroscedastic nonparametric model; NSD errors; Block thresholding; Optimal convergence rate; COMPLETE CONVERGENCE; MINIMAX OPTIMALITY; REGRESSION-MODEL; RANDOM-VARIABLES; WEIGHTED SUMS; RANDOM DESIGN;
D O I
10.1007/s42952-020-00049-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider two estimators, a hard thresholding wavelet estimator and a block thresholding wavelet estimator, for the regression function in heteroscedastic nonparametric model with negatively super-additive dependent (NSD) errors. The random design distribution is known or unknown, and the corresponding adaptive properties of these estimators are investigated over Besov spaces, for the L2 risk. The results indicate that the block thresholding estimator is theoretically and computationally superior to the hard thresholding estimator with the former attains the optimal convergence rates, while the later achieves the nearly optimal convergence rates. Thus the block thresholding estimator provides extensive adaptivity to many irregular function classes even though with the presence of heteroscedastic NSD errors.
引用
收藏
页码:1173 / 1194
页数:22
相关论文
共 11 条
  • [1] The adaptivity of thresholding wavelet estimators in heteroscedastic nonparametric model with negatively super-additive dependent errors
    Yuncai Yu
    Xinsheng Liu
    Ling Liu
    Mohamed Sief
    Journal of the Korean Statistical Society, 2020, 49 : 1173 - 1194
  • [2] ON ADAPTIVITY OF WAVELET THRESHOLDING ESTIMATORS WITH NEGATIVELY SUPER-ADDITIVE DEPENDENT NOISE
    Yu, Yuncai
    Liu, Xinsheng
    Liu, Ling
    Liu, Weisi
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1485 - 1500
  • [3] On consistency of least square estimators in the simple linear EV model with negatively orthant dependent errors
    Wang, Xuejun
    Hu, Shuhe
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 1434 - 1463
  • [4] Consistency for wavelet estimator in nonparametric regression model with extended negatively dependent samples
    Ding, Liwang
    Chen, Ping
    Li, Yongming
    STATISTICAL PAPERS, 2020, 61 (06) : 2331 - 2349
  • [5] Asymptotic properties of wavelet estimators in heteroscedastic semiparametric model based on negatively associated innovations
    Hu, Xueping
    Zhong, Jinbiao
    Ren, Jiashun
    Shi, Bing
    Yu, Keming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [6] A NOTE ON THE CONSISTENCY OF WAVELET ESTIMATORS IN NONPARAMETRIC REGRESSION MODEL UNDER WIDELY ORTHANT DEPENDENT RANDOM ERRORS
    Ding, Liwang
    Chen, Ping
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1471 - 1484
  • [7] Wavelet estimation for the nonparametric additive model in random design and long-memory dependent errors
    Benhaddou, Rida
    Liu, Qing
    JOURNAL OF NONPARAMETRIC STATISTICS, 2024, 36 (04) : 1088 - 1113
  • [8] Consistency properties for the wavelet estimator in nonparametric regression model with dependent errors
    He, Qihui
    Chen, Mingming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [9] Consistency for wavelet estimator in nonparametric regression model with extended negatively dependent samples
    Liwang Ding
    Ping Chen
    Yongming Li
    Statistical Papers, 2020, 61 : 2331 - 2349
  • [10] The rates of strong consistency for estimators in heteroscedastic partially linear errors-in-variables model for widely orthant dependent samples
    Wu, Yi
    Wang, Xuejun
    Shen, Aiting
    STOCHASTIC MODELS, 2024, 40 (04) : 728 - 755