Mixed finite element analysis and numerical solitary solution for the RLW equation

被引:25
作者
Luo, ZD [1 ]
Liu, RX
机构
[1] Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
[2] Univ Sci & Technol China, Dept Math, Hefei, Anhui, Peoples R China
关键词
RLW equation; mixed finite element; error estimate;
D O I
10.1137/S0036142996312999
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a mixed finite element (MFE) formulation is proposed for the 1-D regularized long wave (RLW) equation u(t) + auu(x) ? delta u(xxt) = 0. The existence of its mixed generalized solution and semidiscrete and fully discrete mixed finite element solutions is proved, error estimates based on energy methods are given, and finally, results of numerical experiments comparing this formulation with a Galerkin method based on cubic splines are also given.
引用
收藏
页码:89 / 104
页数:16
相关论文
共 35 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]   GALERKIN METHODS APPLIED TO SOME MODEL EQUATIONS FOR NONLINEAR DISPERSIVE WAVES [J].
ALEXANDER, ME ;
MORRIS, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 30 (03) :428-451
[3]  
[Anonymous], 1979, FINITE ELEMENT APPRO, DOI DOI 10.1007/BFB0063447
[4]   A FAMILY OF HIGHER-ORDER MIXED FINITE-ELEMENT METHODS FOR PLANE ELASTICITY [J].
ARNOLD, DN ;
DOUGLAS, J ;
GUPTA, CP .
NUMERISCHE MATHEMATIK, 1984, 45 (01) :1-22
[5]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[6]  
BERNARDI C, 1985, MATH COMPUT, V44, P71, DOI 10.1090/S0025-5718-1985-0771031-7
[7]   NUMERICAL SCHEMES FOR A MODEL FOR NONLINEAR DISPERSIVE WAVES [J].
BONA, JL ;
PRITCHARD, WG ;
SCOTT, LR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (02) :167-186
[8]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[9]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[10]  
Ciarlet PG., 1978, The Finite Element Method for Elliptic Problems