Electrolyte-gated carbon nanotube field-effect transistor-based biosensors: Principles and applications

被引:52
|
作者
Shkodra, Bajramshahe [1 ]
Petrelli, Mattia [1 ]
Angeli, Martina Aurora Costa [1 ]
Garoli, Denis [2 ]
Nakatsuka, Nako [3 ]
Lugli, Paolo [1 ]
Petti, Luisa [1 ]
机构
[1] Free Univ Bozen Bolzano, Fac Sci & Technol, Pzza Univ 1, I-39100 Bolzano, Italy
[2] Ist Italiano Tecnol, Via Morego 30, I-16163 Genoa, Italy
[3] Swiss Fed Inst Technol, Lab Biosensors & Bioelect, Gloriastr 35, CH-8092 Zurich, Switzerland
关键词
LABEL-FREE DETECTION; REAL-TIME; SMALL MOLECULES; ALIGNED ARRAYS; HUMAN SERUM; PERFORMANCE; GRAPHENE; GROWTH; SENSOR; NETWORKS;
D O I
10.1063/5.0058591
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nowadays, there is a high demand for sensitive and selective real-time analytical methods suitable for a wide range of applications, from personalized telemedicine, drug discovery, food safety, and quality control, to defense, security, as well as environmental monitoring. Biosensors are analytical devices able to detect bio-chemical analytes (e.g., neurotransmitters, cancer biomarkers, bio-molecules, and ions), through the combination of a bio-recognition element and a bio-transduction device. The use of customized bio-recognition elements such as enzymes, antibodies, aptamers, and ion-selective membranes facilitates achieving high selectivity. Among the different bio-transduction devices currently available, electrolyte-gated field-effect transistors, in which the dielectric is represented by an ionic liquid buffer solution containing the targeted analyte, are gaining increasing attention. Indeed, these bio-transduction devices are characterized by superior electronic properties and intrinsic signal amplification that allow the detection of a wide range of bio-molecules with high sensitivity (down to pM concentration). A promising semiconducting material for bio-transduction devices is represented by carbon nanotubes, due to their unique electrical properties, nanosize, bio-compatibility, and their simple low-cost processability. This work provides a comprehensive and critical review of electrolyte-gated carbon nanotube field-effect transistor-based biosensors. First, an introduction to these bio-sensing devices is given. Next, the device configurations and operating principles are presented, and the most used materials and processes are reviewed with a particular focus on carbon nanotubes as the active material. Subsequently, different functionalization strategies reported in the literature, based on enzymes, antibodies, aptamers, and ion-selective membranes, are analyzed critically. Finally, present issues and challenges faced in the area are investigated, the conclusions are drawn, and a perspective outlook over the field of bio-sensing technologies, in general, is provided.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Polymer electrolyte-gated carbon nanotube field-effect transistor
    Lu, CG
    Fu, Q
    Huang, SM
    Liu, J
    NANO LETTERS, 2004, 4 (04) : 623 - 627
  • [2] Optimization of the Spray-Deposited Carbon Nanotube Semiconducting Channel for Electrolyte-Gated Field-Effect Transistor-Based Biosensing Applications
    Shkodra, Bajramshahe
    Petrelli, Mattia
    Angeli, Martina Aurora Costa
    Inam, A. K. M. Sarwar
    Lugli, Paolo
    Petti, Luisa
    IEEE SENSORS JOURNAL, 2023, 23 (20) : 23958 - 23965
  • [3] Flexible carbon nanotube-based electrolyte-gated field-effect transistor for spermidine detection
    Shkodra, Bajramshahe
    Petrelli, Mattia
    Angeli, Martina Costa
    Inam, Akm Sarwar
    Avancini, Enrico
    Munzenrieder, Niko
    Lugli, Paolo
    Petti, Luisa
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON FLEXIBLE AND PRINTABLE SENSORS AND SYSTEMS (FLEPS), 2021,
  • [4] Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors
    Loïg Kergoat
    Benoît Piro
    Magnus Berggren
    Gilles Horowitz
    Minh-Chau Pham
    Analytical and Bioanalytical Chemistry, 2012, 402 : 1813 - 1826
  • [5] Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors
    Kergoat, Loig
    Piro, Benoit
    Berggren, Magnus
    Horowitz, Gilles
    Minh-Chau Pham
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2012, 402 (05) : 1813 - 1826
  • [6] Electrolyte-Gated Carbon Nanotube Field-Effect Transistor-Based Sensors for Nanoplastics Detection in Seawater: A Study of the Interaction between Nanoplastics and Carbon Nanotubes
    Elli, Giulia
    Ciocca, Manuela
    Shkodra, Bajramshahe
    Petrelli, Mattia
    Costa Angeli, Martina Aurora
    Altana, Antonio
    Carzino, Riccardo
    Fragouli, Despina
    Petti, Luisa
    Lugli, Paolo
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (29) : 38768 - 38779
  • [7] Electroluminescence from Electrolyte-Gated Carbon Nanotube Field-Effect Transistors
    Zaumseil, Jana
    Ho, Xinning
    Guest, Jeffrey R.
    Wiederrecht, Gary P.
    Rogers, John A.
    ACS NANO, 2009, 3 (08) : 2225 - 2234
  • [8] Carbon nanotubes and graphene nano field-effect transistor-based biosensors
    Tran, Thien-Toan
    Mulchandani, Ashok
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2016, 79 : 222 - 232
  • [9] Carbon Nanotube Field-Effect Transistor-Based Chemical and Biological Sensors
    Yao, Xuesong
    Zhang, Yalei
    Jin, Wanlin
    Hu, Youfan
    Cui, Yue
    SENSORS, 2021, 21 (03) : 1 - 18
  • [10] Electrolyte-Gated Organic Field-Effect Transistor for Monitoring Amyloid Aggregation
    Ruiz-Molina, Sara
    Martinez-Domingo, Carme
    Ricci, Simona
    Casalini, Stefano
    Mas-Torrent, Marta
    ACS APPLIED ELECTRONIC MATERIALS, 2024,