Energy Dissipation and Regularity for a Coupled Navier-Stokes and Q-Tensor System

被引:94
作者
Paicu, Marius [1 ]
Zarnescu, Arghir [2 ]
机构
[1] Univ Bordeaux 1, IMB, F-33405 Talence, France
[2] Math Inst, Oxford OX1 3LB, England
基金
英国工程与自然科学研究理事会;
关键词
NEMATIC LIQUID-CRYSTALS; FENE DUMBBELL MODEL; DE-GENNES THEORY; VISCOELASTIC FLUIDS; POLYMERIC FLOWS; WELL-POSEDNESS; EXISTENCE; EQUATIONS; HYDRODYNAMICS; ORDER;
D O I
10.1007/s00205-011-0443-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a complex non-Newtonian fluid that models the flowof nematic liquid crystals. The fluid is described by a system that couples a forced Navier-Stokes system with a parabolic-type system. We prove the existence of global weak solutions in dimensions two and three.We show the existence of a Lyapunov functional for the smooth solutions of the coupled system and use cancellations that allow its existence to prove higher global regularity in dimension two. We also show the weak-strong uniqueness in dimension two.
引用
收藏
页码:45 / 67
页数:23
相关论文
共 29 条
[1]  
[Anonymous], 1998, Perfect Incompressible Fluids
[2]   Existence of global weak solutions for some polymeric flow models [J].
Barrett, JW ;
Schwab, C ;
Süli, E .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (06) :939-983
[3]  
Beris A. N., 1994, OXFORD ENG SCI SERIE, V36
[4]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[5]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[6]   About lifespan of regular solutions of equations related to viscoelastic fluids [J].
Chemin, JY ;
Masmoudi, N .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (01) :84-112
[7]   Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D [J].
Constantin, P. ;
Masmoudi, Nader .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 278 (01) :179-191
[8]   Regularity of coupled two-dimensional nonlinear Fokker-Planck and Navier-Stokes systems [J].
Constantin, P. ;
Fefferman, C. ;
Titi, E. S. ;
Zarnescu, A. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (03) :789-811
[9]   GLOBAL REGULARITY OF SOLUTIONS OF COUPLED NAVIER-STOKES EQUATIONS AND NONLINEAR FOKKER PLANCK EQUATIONS [J].
Constantin, Peter ;
Seregin, Gregory .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (04) :1185-1196
[10]  
De Gennes P. G., 1974, The Physics of Liquid Crystals