A machine learning approach for automated assessment of retinal vasculature in the oxygen induced retinopathy model

被引:17
|
作者
Mazzaferri, Javier [1 ]
Larrivee, Bruno [1 ,2 ]
Cakir, Bertan [3 ]
Sapieha, Przemyslaw [1 ,2 ,4 ]
Costantino, Santiago [1 ,2 ]
机构
[1] Maisonneuve Rosemont Hosp, Res Ctr, Montreal, PQ, Canada
[2] Univ Montreal, Dept Ophthalmol, Montreal, PQ, Canada
[3] Univ Freiburg, Ctr Eye, Med Ctr, Fac Med, Freiburg, Germany
[4] Univ Montreal, Dept Biochem, Montreal, PQ, Canada
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
加拿大健康研究院;
关键词
ENDOTHELIAL GROWTH-FACTOR; MOUSE; ANGIOGENESIS;
D O I
10.1038/s41598-018-22251-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Preclinical studies of vascular retinal diseases rely on the assessment of developmental dystrophies in the oxygen induced retinopathy rodent model. The quantification of vessel tufts and avascular regions is typically computed manually from flat mounted retinas imaged using fluorescent probes that highlight the vascular network. Such manual measurements are time-consuming and hampered by user variability and bias, thus a rapid and objective method is needed. Here, we introduce a machine learning approach to segment and characterize vascular tufts, delineate the whole vasculature network, and identify and analyze avascular regions. Our quantitative retinal vascular assessment (QuRVA) technique uses a simple machine learning method and morphological analysis to provide reliable computations of vascular density and pathological vascular tuft regions, devoid of user intervention within seconds. We demonstrate the high degree of error and variability of manual segmentations, and designed, coded, and implemented a set of algorithms to perform this task in a fully automated manner. We benchmark and validate the results of our analysis pipeline using the consensus of several manually curated segmentations using commonly used computer tools. The source code of our implementation is released under version 3 of the GNU General Public License (https://www.mathworks.com/matlabcentral/fileexchange/65699-javimazzaf-qurva).
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Accelerated oxygen-induced retinopathy is a reliable model of ischemia-induced retinal neovascularization
    Villacampa, Pilar
    Menger, Katja E.
    Abelleira, Laura
    Ribeiro, Joana
    Duran, Yanai
    Smith, Alexander J.
    Ali, Robin R.
    Luhmann, Ulrich F.
    Bainbridge, James W. B.
    PLOS ONE, 2017, 12 (06):
  • [42] Characterisation of retinal vascular growth and retinal astrocytes in a novel oxygen-induced retinopathy murine model
    Ah-Kye, Laura
    Kumar, Tejas
    Selvam, Senthil
    Naser, Parisa
    Dawood, Almas
    McMenamin, Paul
    Fruttiger, Marcus
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [43] Automated Clinical Assessment in Diabetic Retinopathy Retinal Images: A Review
    Sriman, Bowornrat
    Muangnak, Nittaya
    Sirawattananon, Chaiwat
    2022 19TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE 2022), 2022,
  • [44] Adenosine in retinal vasculogenesis and oxygen-induced retinopathy
    Lutty, GA
    Merges, C
    Kunz, M
    McLeod, DS
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1997, 38 (04) : 4474 - 4474
  • [45] Effect of bicarbonate on retinal vasculature and acidosis-induced retinopathy in the neonatal rat
    Berdahl, JP
    Leske, DA
    Fautsch, MP
    Lanier, WL
    Holmes, JM
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2005, 243 (04) : 367 - 373
  • [46] Effect of bicarbonate on retinal vasculature and acidosis-induced retinopathy in the neonatal rat
    John P. Berdahl
    David A. Leske
    Michael P. Fautsch
    William L. Lanier
    Jonathan M. Holmes
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2005, 243 : 367 - 373
  • [47] Image quality assessment of retinal fundus photographs for diabetic retinopathy in the machine learning era: a review
    Goncalves, Mariana Batista
    Nakayama, Luis Filipe
    Ferraz, Daniel
    Faber, Hanna
    Korot, Edward
    Malerbi, Fernando Korn
    Regatieri, Caio Vinicius
    Maia, Mauricio
    Celi, Leo Anthony
    Keane, Pearse A.
    Belfort Jr, Rubens
    EYE, 2024, 38 (03) : 426 - 433
  • [48] Effect of bicarbonate on retinal vasculature and on acidosis-induced retinopathy in the neonatal rat
    Berdahl, JP
    Leske, DA
    Fautsch, MP
    Lanier, WL
    Holmes, JM
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2004, 45 : U196 - U196
  • [49] Image quality assessment of retinal fundus photographs for diabetic retinopathy in the machine learning era: a review
    Mariana Batista Gonçalves
    Luis Filipe Nakayama
    Daniel Ferraz
    Hanna Faber
    Edward Korot
    Fernando Korn Malerbi
    Caio Vinicius Regatieri
    Mauricio Maia
    Leo Anthony Celi
    Pearse A. Keane
    Rubens Belfort Jr.
    Eye, 2024, 38 : 426 - 433
  • [50] A Machine-Learning Approach to the Automated Assessment of Joint Synovitis Activity
    Wojciechowski, Konrad
    Smolka, Bogdan
    Cupek, Rafal
    Ziebinski, Adam
    Nurzynska, Karolina
    Kulbacki, Marek
    Segen, Jakub
    Fojcik, Marcin
    Mielnik, Pawel
    Hein, Sebastian
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2016, PT II, 2016, 9876 : 440 - 450