A machine learning approach for automated assessment of retinal vasculature in the oxygen induced retinopathy model

被引:17
|
作者
Mazzaferri, Javier [1 ]
Larrivee, Bruno [1 ,2 ]
Cakir, Bertan [3 ]
Sapieha, Przemyslaw [1 ,2 ,4 ]
Costantino, Santiago [1 ,2 ]
机构
[1] Maisonneuve Rosemont Hosp, Res Ctr, Montreal, PQ, Canada
[2] Univ Montreal, Dept Ophthalmol, Montreal, PQ, Canada
[3] Univ Freiburg, Ctr Eye, Med Ctr, Fac Med, Freiburg, Germany
[4] Univ Montreal, Dept Biochem, Montreal, PQ, Canada
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
加拿大健康研究院;
关键词
ENDOTHELIAL GROWTH-FACTOR; MOUSE; ANGIOGENESIS;
D O I
10.1038/s41598-018-22251-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Preclinical studies of vascular retinal diseases rely on the assessment of developmental dystrophies in the oxygen induced retinopathy rodent model. The quantification of vessel tufts and avascular regions is typically computed manually from flat mounted retinas imaged using fluorescent probes that highlight the vascular network. Such manual measurements are time-consuming and hampered by user variability and bias, thus a rapid and objective method is needed. Here, we introduce a machine learning approach to segment and characterize vascular tufts, delineate the whole vasculature network, and identify and analyze avascular regions. Our quantitative retinal vascular assessment (QuRVA) technique uses a simple machine learning method and morphological analysis to provide reliable computations of vascular density and pathological vascular tuft regions, devoid of user intervention within seconds. We demonstrate the high degree of error and variability of manual segmentations, and designed, coded, and implemented a set of algorithms to perform this task in a fully automated manner. We benchmark and validate the results of our analysis pipeline using the consensus of several manually curated segmentations using commonly used computer tools. The source code of our implementation is released under version 3 of the GNU General Public License (https://www.mathworks.com/matlabcentral/fileexchange/65699-javimazzaf-qurva).
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Tenomodulin Inhibits Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy
    Wang, Wei
    Li, Zhongqiu
    Sato, Tatsuhiko
    Oshima, Yusuke
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2012, 13 (11): : 15373 - 15386
  • [32] Sulodexide inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy
    Jo, Hyoung
    Jung, Sang Hoon
    Kang, Jun
    Yim, Hye Bin
    Kang, Kui Dong
    BMB REPORTS, 2014, 47 (11) : 637 - 642
  • [33] Celecoxib attenuates retinal angiogenesis in a mouse model of oxygen-induced retinopathy
    Liu, Ningning
    Chen, Lei
    Cai, Na
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2015, 8 (05): : 4990 - 4998
  • [34] Cedilanid inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy
    Zhang, Jing Shang
    Wang, Jin Da
    An, Ying
    Xiong, Ying
    Li, Jing
    Jonas, Jost B.
    Xu, Liang
    Zhang, Wei
    Wan, Xiu Hua
    MOLECULAR VISION, 2017, 23 : 346 - 355
  • [35] The effect of desflurane on retinal angiogenesis in a mouse model of oxygen-induced retinopathy
    Ri, Hyun-Su
    Bae, Sun Sik
    Ha, Jung Min
    Kim, Hee Young
    Baek, Seung-Hoon
    JOURNAL OF ANESTHESIA, 2020, 34 (03) : 352 - 357
  • [36] The effect of desflurane on retinal angiogenesis in a mouse model of oxygen-induced retinopathy
    Hyun-Su Ri
    Sun Sik Bae
    Jung Min Ha
    Hee Young Kim
    Seung-Hoon Baek
    Journal of Anesthesia, 2020, 34 : 352 - 357
  • [37] The effect of sevoflurane on retinal angiogenesis in a mouse model of oxygen-induced retinopathy
    Hee Young Kim
    Seung-Hoon Baek
    Seong Wan Baik
    Sun Sik Bae
    Jung Min Ha
    Minkyoung Kim
    Gyeong-Jo Byeon
    Hye Jin Kim
    Hyun-Su Ri
    So Hyun Kim
    Journal of Anesthesia, 2018, 32 : 204 - 210
  • [38] Automated Machine Learning for Predicting Diabetic Retinopathy Progression From Ultra-Widefield Retinal Images
    Silva, Paolo S.
    Zhang, Dean
    Jacoba, Cris Martin P.
    Fickweiler, Ward
    Lewis, Drew
    Leitmeyer, Jeremy
    Curran, Katie
    Salongcay, Recivall P.
    Doan, Duy
    Ashraf, Mohamed
    Cavallerano, Jerry D.
    Sun, Jennifer K.
    Peto, Tunde
    Aiello, Lloyd Paul
    JAMA OPHTHALMOLOGY, 2024, 142 (03) : 171 - 178
  • [39] Performance of Automated Machine Learning for Predicting Diabetic Retinopathy Progression from Ultrawide Field Retinal Images
    Silva, Paolo S.
    Jacoba, Cris Martin P.
    Zhang, Dean
    Fickweiler, Ward
    Lewis, Drew
    Leitmeyer, Jeremy
    Salongcay, Recivall
    Curran, Katie
    Doan, Duy
    Ashraf, Mohamed
    Cavallerano, Jerry
    Sun, Jennifer K.
    Peto, Tunde
    Aiello, Lloyd P.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [40] Machine Learning Model for Automated Assessment of Short Subjective Answers
    Amur, Zaira Hassan
    Hooi, Yew Kwang
    Bhanbro, Hina
    Bhatti, Mairaj Nabi
    Soomro, Gul Muhammad
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 104 - 112