A machine learning approach for automated assessment of retinal vasculature in the oxygen induced retinopathy model

被引:17
|
作者
Mazzaferri, Javier [1 ]
Larrivee, Bruno [1 ,2 ]
Cakir, Bertan [3 ]
Sapieha, Przemyslaw [1 ,2 ,4 ]
Costantino, Santiago [1 ,2 ]
机构
[1] Maisonneuve Rosemont Hosp, Res Ctr, Montreal, PQ, Canada
[2] Univ Montreal, Dept Ophthalmol, Montreal, PQ, Canada
[3] Univ Freiburg, Ctr Eye, Med Ctr, Fac Med, Freiburg, Germany
[4] Univ Montreal, Dept Biochem, Montreal, PQ, Canada
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
加拿大健康研究院;
关键词
ENDOTHELIAL GROWTH-FACTOR; MOUSE; ANGIOGENESIS;
D O I
10.1038/s41598-018-22251-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Preclinical studies of vascular retinal diseases rely on the assessment of developmental dystrophies in the oxygen induced retinopathy rodent model. The quantification of vessel tufts and avascular regions is typically computed manually from flat mounted retinas imaged using fluorescent probes that highlight the vascular network. Such manual measurements are time-consuming and hampered by user variability and bias, thus a rapid and objective method is needed. Here, we introduce a machine learning approach to segment and characterize vascular tufts, delineate the whole vasculature network, and identify and analyze avascular regions. Our quantitative retinal vascular assessment (QuRVA) technique uses a simple machine learning method and morphological analysis to provide reliable computations of vascular density and pathological vascular tuft regions, devoid of user intervention within seconds. We demonstrate the high degree of error and variability of manual segmentations, and designed, coded, and implemented a set of algorithms to perform this task in a fully automated manner. We benchmark and validate the results of our analysis pipeline using the consensus of several manually curated segmentations using commonly used computer tools. The source code of our implementation is released under version 3 of the GNU General Public License (https://www.mathworks.com/matlabcentral/fileexchange/65699-javimazzaf-qurva).
引用
收藏
页数:11
相关论文
共 50 条
  • [21] GAN-Based Approach for Diabetic Retinopathy Retinal Vasculature Segmentation
    Sebastian, Anila
    Elharrouss, Omar
    Al-Maadeed, Somaya
    Almaadeed, Noor
    BIOENGINEERING-BASEL, 2024, 11 (01):
  • [22] Comparison of the effects of intravitreal aflibercept, bevacizumab and ranibizumab on retinal function and vasculature after oxygen-induced retinopathy
    Lam, Wai Ching
    Tsang, Jessica
    Lo, Amy C. Y.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [23] Simultaneous assessment of aberrant retinal vascularization, thickness, and function in an in vivo mouse oxygen-induced retinopathy model
    Olachi J. Mezu-Ndubuisi
    Thao Adams
    Lauren K. Taylor
    Adaure Nwaba
    Jens Eickhoff
    Eye, 2019, 33 : 363 - 373
  • [24] Simultaneous assessment of aberrant retinal vascularization, thickness, and function in an in vivo mouse oxygen-induced retinopathy model
    Mezu-Ndubuisi, Olachi J.
    Adams, Thao
    Taylor, Lauren K.
    Nwaba, Adaure
    Eickhoff, Jens
    EYE, 2019, 33 (03) : 363 - 373
  • [25] Automated machine learning (AutoML) model for diabetic retinopathy (DR) image classification from ultrawide field (UWF) retinal images
    Silva, Paolo S.
    Lewis, Drew
    Cavallerano, Jerry
    Ashraf, Mohamed
    Jacoba, Cris Martin P.
    Doan, Duy
    Wang, Frank S.
    Sun, Jennifer K.
    Aiello, Lloyd P.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [26] The retinal vasculature and function of the neural retina in a rat model of retinopathy of prematurity
    Liu, Kegao
    Akula, James D.
    Falk, Christopher
    Hansen, Ronald M.
    Fulton, Anne B.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2006, 47 (06) : 2639 - 2647
  • [27] The effect of sevoflurane on retinal angiogenesis in a mouse model of oxygen-induced retinopathy
    Kim, Hee Young
    Baek, Seung-Hoon
    Baik, Seong Wan
    Bae, Sun Sik
    Ha, Jung Min
    Kim, Minkyoung
    Byeon, Gyeong-Jo
    Kim, Hye Jin
    Ri, Hyun-Su
    Kim, So Hyun
    JOURNAL OF ANESTHESIA, 2018, 32 (02) : 204 - 210
  • [28] Lumiracoxib inhibits retinal neovascularization in a rat model of oxygen-induced retinopathy
    Ottlecz, A
    Zang, E
    Ma, JX
    Lambrou, GN
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2004, 45 : U357 - U357
  • [29] Sulodexide inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy
    Jo, Hyoung
    Kim, Kyung A.
    Jung, Sang Hoon
    Park, Sang In
    Yim, Hye Bin
    Kim, Su A.
    Kang, Kui Dong
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)
  • [30] Imaging Retinal Vascular Changes in the Mouse Model of Oxygen-Induced Retinopathy
    Furtado, Joao M.
    Davies, Michael H.
    Choi, Dongseok
    Lauer, Andreas K.
    Appukuttan, Binoy
    Bailey, Steven T.
    Rahman, Hassan T.
    Payne, John F.
    Stempel, Andrew J.
    Mohs, Kathleen
    Powers, Michael R.
    Yeh, Steven
    Smith, Justine R.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2012, 1 (02):